
NAVAL POSTGRADUATE SCHOOL
Monterey, California

AD-A283 607111liii 11111111111111111111111 tilil

94- 26847 TEI ELMAt3G?25 1994

NODE TO PROCESSOR ALLOCATION FOR LARGE
GRAIN DATA FLOW GRAPHS IN

THROUGHPUT-CRITICAL APPUCATIONS

by

John P. Cardany

June 1994

Thesis Advisor: Shridhar B. Shukla

Approved for public release; distribution is unlimited.

94 8 23 037

Unclassified
SECURIrY C•ASSFICATIM OFTs PAGE

REPORT DOCUMENTATION PAGE I -Noin.o7o"

is. REPORT SECURT CLASSIFiCATION lb. RESTRJCflVE MARKIN0S
UNCLASSIFIED

2I. SECURITY CLASSCATION AUBORITY S. DWIS!IOUIOWAVAILABIJTY OF REPORT

2b. SCEHEDUICATIE

4, PMUORMD OC ORGANUATION REPORT NUMAfR(S) S. MONITORING ORGAN7ATION REPORT NUMBER(S)

6& NAME OF FERIORMNO OROAN1ATION 6. OFFICE SYMBOL 7& NAME OF AMORWO ORGANIZATION
I(if dPPlIub)

Naval Postgrduate School FCE Naval Postgraduate School
6r. ADDRESS (Chy. Si.t Md ZIP Cads) 7b. ADDRESS (Oly. Stft, mmd ZIP Cads)

Monterey, CA 93943-5000 Monterey, CA 93943-5000
S&. NAME OF FUNDINGISPONSORING WOFHCSYIMBO 9. PROCURMITDII1RUME04ID04I1FICACION NUMBER

ORGAN2XfTIO OIf WHO"b)

S. ADDRESS (Cy. Sin, amd ZIP Code) 10. SORCE OFC U NUMBAES
IROORAM (,Ioucr ITASK WORrUM
samNO. NO. WO. ACCESSION NO.

11. ITLE & 'ON&e Sam* l oCU cio fLo

Node to Processor Allocation for Large Grain Data Flow Graphs in Throughput-Critical Applications (U)
12. PERSONAL AUTHOR(S

C•rdmy, John Paul
13w. TYPE OF REPORT 13b. ThICOVE 14.AUOFRWOir (YwEMah.Ds) 15. PAGE COUNT

Masters Thesis I . To - June 1994 95
1& SUPILdDITARY NOTAT

The views expressed in this thesis are those of the author and do not reflect the official policy or position of
the Department of Defense or the U.S. Government.

17. COSAT1 CODS 18. LSUBJBCTTfIS i oe if amm m Imd -1tif by biwcksua)
________ R________ SB-RU Revolvn Cylind (OC), Stott after Finish (SAF),T ~ ~Lim Grain Daf Flow aML)Graph C n, Node Aflocsati

19. ABSTR]ACT (Cenmin m a •vmi ma7adtnif7by bl-kI ml)bis th:esis descbes the isues involved in node allocation for a Large Grain Data Flow (LGDF) model

used in Navy signal processing applications. In the model studied, nodes are assigned to processors based on
load balancing, communication I computation overlap, and memory module contention. Current models using
the Revolving Cylinder (RC) technique for LGDF graph analysis do not adequately address node allocation.
Thus, a node to processor allocation component is added to a computer simulator of an LGDF graph model. It
is demonstrated that the RC technique, when proper node allocation is taken into account, can improve overall
throughput as compared to the First-Come-First-Served (FCFS) technique for high
communication/computation costs.

20. BDIS MCNAVAILABLM OF AM2IRACT SB'q~rOTY C TION

0SAS M 0IMcUaS Unclassified
22L NAME OF REBSF IADIFVIDUAL 2bLONE (IOnmda Am CGdo) 22r. OPICE SYMBOL

Shukla, Shridhar B. (408) 656-2764 ECI$h

UP Fmtl14?JJVN 36W f06W o10rU OAS A a

S/N 0102-LF-014-6603 Unclassified

i

Approved for public release; distribution is unlimited

Node to Processor Allocation for Large Grain Data Flow Graphs In
Throughput-Critical Applications

by

John Paul Cardany
Lieutenant, United States Navy

B.S., University of Washington, 1987

Submitted in partial fufillment of the

requirements for the degree of

MASTER OF SCIENCE IN ELECTRCAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL

June 1994

Authwo P
ýJonP. Cardany 0

Approved by:
Shridhar B. Shukla, Thesis Advisor

Deparmunent of Ekcrical and Computer Engeering

ii

ABSTRACT

This thesis describes issues involved in node allocation for a Larg Grain Data Flow

(LGDF) model used in Navy signal processing applications. In the model studied, nodes

are assigned to processors based on load balancing, communication I computation overlap,

and memory module contention. Current modelsh- ý -- the Revolving Cylinder (RC)

technique for LGDF graph analysis do not adequately adcýss node allocation. Thus, a

node to processor allocation component is added to a computer simulator of an LGDF

graph model. It is demonstrated that the RC technique, when proper node allocation is

taken into account, can improve overall throughput as compared to the firsr-come-firr-

served (F;FS) technique for high communication / computation costs.

Accesion For
NTIS CRAMI •

DTIC TAB

Unannounced
Justification

By
Distribution I

Availability Codes

Avail andlor
Dist Special

I-

Ino

TABLE OF CONTENTS

L INTRODUCTION 1.............1

A. BACKGROUND 1

B. THESIS SCOPE AND CONTRIBUTION 2

C. THESIS ORGANIZATION ... 2

IL ISSUES IN ALLOCATION OF NODES .. 3

A. PROBLEMS WITH CURRENT ALLOCATION 3

B. ISSUES ADDRESSED .. 6

1. Load Balancing.................... 6

2. Ove .. 6

3. Memory Contention ... 9

C. 'WR.?AP-AROUND .. 9

. OALGORITMFOR NODE ALLOCATION .. 15

A. OVERLAP 15

B. WRAP-AROUND 17

IV. RUN-TIME PERFORMANCE ... 18

A. PE ORMANCEC............................... 18

B. RESULTS .. 21

V. CONCLUSION .. 31

A. FURTHER RESEARCH ... 31

APPENDIX A. NODE ALLOCATION PROGRAM 32

APPENDIX B: PROGRAM USER'S MANUAL 56

APPENDIX C: SAMPLE INPUT DATA M .. 80

iv

APPENDIX D: SAMPLE RUN OF PROGRAMS .. 84

LIST OF REFER FNCEES 87

INITIAL DISTRIBUTION LIST ... 88

V

I. INTRODUCTION

The Revolving Cylinder (RC) technique [Ref. 1] was developed as an attempt to

enhance throughput over the First-Come-First-Served (FCFS) technique for dispatching

nodes for communicaon intensive applications A computer programmed simulator based

on the Department of the Navy's ANIUYS-2 Digital Signal Processing System, also

known as the Enhanced Modular Signal Processor (EMSP) [Ref. 21, was developed to

evaluate the RC techniques with respect to such machines. In this thesis, a node to

p roorallocation component has been added to the simulato.

A. BACKGROUND

Large Grain Data Flow (LGDF) graphs are particularly suited to describing

applications where large amounts of data are generated and require predictable, periodic

processing. Thus, LGDF graphs are often used to model signal processing applications

with specific throughput requirements LGDF graph execution can be carried out using a

balance of compile-time and run-time decisions in order to achieve the most efficient

throughput. Digital signal processing (DSP) applications lend themselves easily to

compile-time analysis because DSP applications are very specific in the computation

required for each node [Ref. 3]. The ANIUYS-2 programs use large grain data flow

execution as their run-time environment and thus can be modeled using an LGDF graph

reesptaion

For an LGDF graph receiving periodic input data, FCFS cannot provide uniform

throughput under high loads because the nodes receiving external data become ready
independent of other nodes in the graph and thus the nodes higher in the graph become

ready before the lower nodes in the graph. This results in system congestion and causes a

decrease in throughput. The RC technique adds graph dependencies to the nodes in the

graph thus reducing or eliminating this congestion to ensure a more uniform throughput.

The FCFS scheduling technique places nodes into the system based on when the

nodes are ready. Thus FCFS cannot benefit from compile-time efforts in scheduling nodes

nor does it bind nodes to specific processors for execution. In previous applications of the

RC technique, graph dependencies were added at compile-time based on node allocation

that was performed randomly. Performance with this random allocation, however, was

poorer than that provided by FCFS. Thus, in order to ensure that RC facilitates better

performance than FCFS, it is necessary to modify the generation of graph dependencies

using the RC technique based on the node to processor allocation.

B. THESIS SCOPE AND CONTRIBUTION

This thesis describes an algorithm for allocation of nodes to processors for an LGDF

graph. A real application modeled as an LGDF graph is studied, based on a signal

correlator graph representing an actual application running on the ANR/YS-2. Results are

generated using the node allocation program as well as previously developed software and

comparisons made between the First-Come-First-Served (FCFS) technique and the

Revolving Cylinder (RC) technique.

C. THESIS ORGANIZATION

Chapter H describes the issues involved in node allocation for improving the

performance of the LGDF. Included are the problems existing with current allocation

methods and the issues addressed as a result of these deficiencies. Chapter III gives a

description of the algorithms used in the node allocation program as they relate to the issues

in Chapter I. Chapter IV presents the analysis of data generated from several scheduling

methods. Chapter V summarizes the results, presents conclusionx drawn from the data

analysis, and provides topics of further study.

2

H. ISSUES IN ALLOCATION OF NODES

There are several issues relating to the task of node allocation. In the model discussed

in this thesis, nodes are assigned to processors based on several factors, such as load

balancing, overlap of communication and computation, and contention between nodes for

memory modules. Each of these is impo..'tant and a delicate balance between these factors

must be accomplished in order to achieve maximum utilization of the processors.

A. PROBLEMS WITH CURRENT ALLOCATION

Node allocation in the general sense refers to the binding of nodes to specific

processors for execution based on certain criteria. Allocation is separate from scheduling

which refers to determining the time at which the node executes on the processor to which

it is allocated. Without proper node allocation, the processors cannot execute at their most

efficient level, and throughput for the data flow graph is reduced as a result. To

demonstrate this, the programs in Appendix A and [Ref. 4] were used on a test data flow

graph, illustrated in Figure 2.1, to allocate nodes and simulate the data flow graph.

The graph shows two input/output processors and 13 nodes. Even numbered nodes

were assumed to have two times the number of execution cycles as odd numbered nodes.

Each individual queue's produce, consume, write, and read amounts were considered

equal; however these values differed over different queues. These are the values shown on

the queues in Figure 2.1. TLe queue capacity was equal to eight times the queue threshold.

The simulation was run with three processors and no setup or breakdown latency for the

nodes was assumed. In addition, the scheduler latency was zero and the communication

time for one word was five cycles. The simulation was run first without node allocation,

i.e., the nodes are assigned to processors without regard for satisfying the criteria

described above, and then with proper node allocation. In the first case, the nodes were

3

allocated dynamically at run-time based on which node was ready and which processor was

free. In the second case, the nodes were allocated statically at compile-time based on load

balancing, queue contention, and memory module contention. The results are compared in

the graph of Figure 2.2. Note the lower utilization rate of the execution unit of the

processor for the simulation without node allocation as well as the lower throughput.

Input

2000) 2000

2000 2000

1000 1000 1000 1000

1000 1000 1000 1000

2000 2000

2000

2000

4000

output

Figure 2.1. Test D)ata Flow Graph

4

11

0 $Wthout Wkcstlan
0 v~th dloeskion

0.95

0.9

0.8
Thou0p Exe Unit Util

Figure 2.2. Improvement With Allocation Over No Allocation

5

B. ISSUES ADDRESSED

1. Load Balancing

In order to ensure the processors are being fully utilized, it is important to ensure

that the nodes executing across processors are balanced with respect to execution and/or

communication times. Since the emphasis of the node allocation algorithms is based upon

maximization of the execution unit utilization, load balancing for the processors will focus

mainly on the execution time of the nodes. Load balancing is achieved by statically

assigning nodes to processors base I on execution times of the nodes, attempting to

maintain the same number of execution cycles per processor.

2. Overlap

Overlap of communication and computation is important to the LGDF model of

computation. The system contains both a control unit and an execution unit per processor.

It is desirable to utilize both of these units in a way that permits use of the execution unit to

the fullest extent possible. This is achieved by overlap of communication and computation.

There are two conditions which must be met for nodes to overlap sufficiently such that the

execution unit is utilized to the fullest extent possible. For two nodes j and j+l, where

node j executes on the processor before node j+l, the following two conditions should

exist:

executionj > setupj+l. (1)

and

breakdownj < executionj+1 (2)

Ideally, perfect overlap of communication and computation is desired, such as

that shown in Figure 2.3.

6

node 1 node 2
assigned asge

CONTROL node 1 node 0 node 2 node 1
UNIT setup breakdown setup breakdown

EXECUTION nod 0 node 1 node 2
UNIT execufte execute execute

Figure 2.3. Ideal Communication IComputation Overlap [Ref. 2]

node I node 2
assigned assigned

CONTROL node 1 node 0 node 2 node 1
UNIT setup breakdown setup bkdeU bekdown

EXECUTION node 0 node 1 node 2
UNIT execute executeexct

Figure 2.4. Typical Communication / Calculation Overlap [Ref. 2]

7

In this figure, it is assumed that node 0 has been executing for some time before

node 1 is assigned. Here there are no idle or blocked cycles on the processor, since nodes

can progress immediately from input (setup) to execution to output (breakdown). Note that

both condition (1) and condition (2) are met for all nodes and the execution unit is operating

continuously. This, however, is not always the case in reality, as shown in Figure 2.4.

In Figure 2.4, there is contention for the execution unit since node 2 has

completed input but cannot progress to the execution unit because node 1 is still executing.

This results in blocked cycles until node 1 has finished executing. In addition, idle cycles

node I node 2 node 3
assigned assigned assigned

CONTROL node 1 node 0 node 2 node 1 node 2 node 3
UNIT setup breakdown setup break- break- setup

down down

EXECUTION node 0 node 1 node 1 node 2
UNIT execute execute blocked execute

Figure 2.5 Poor Communication / Computation Overlap [Ref. 2]

may also exist, such as above, where node 1 has finished breakdown but node 2 is still

executing and does not yet require the control unit. It is desirable to limit the blocked and

idle times to maximize overlap wherever possible. In addition, a situation may also occur

where there is poor overlap, such as that in Figure 2.5.

In this figure node 2 has not completed setup after node 1 finishes execution, and

node 1 must therefore wait for access to the control unit, creating idle cycles on the

execution unit. In addition, node l's breakdown is longer than node 2's execution. This

8

results in additional idle cycles, since node 2 must breakdown and node 3 must setup

before the execution unit is utilized again.

3. Memory Contention

The memory modules are the representation for the system memory [REF 1].

Each processor must address memory modules to tansfer data to or from a node during a

read or write operation, respectively. Each queue in the data flow graph is assigned a

memory module either by the user or arbitrarily by the scheduler. Only one processor can

access a given memory module at any one time. It is possible however, for a processor to

be accessing a memory module (either reading or writing) while another processor is

attempting to utilize the same memory module. This is memory contention. Thus the

processor which is attempting to access the memory module must wait until the memory

module is free. This delays the completion of the graph and affects throughput. Memory

contention can be reduced or avoided by ensuring that sufficient memory modules exist to

fulfill the requirets of all the queues of the graph. Alternatively, queues can be mapped

on the available memory modules such that this contention is minimized

C. WRAP-AROUND

Wrap-around is a technique used to maximize the overlap as permitted by the RC

approach by statically 'wrapping' the breakdown time of the last node to the idle or blocked

time at the head of a cylinder. An example will better illustrate this principle. Figure 2.5 is

a static representation of a cylinder with three nodes on a single processor.

9

Control Unit Execution Unit

setupj idle

setupj+l

executej

idle

breakdownj

r execute j+1ap setup j+2
p

breadowj+, execute j+2

idle

breakdownj+ idle

Figure 2.5. Cylinder Without Wrap-Around

Both control unit and execution unit are shown. Note that because node j+l's setup

time is shorter than node j's execution time, blocked cycles result on the control uniL If

node j+2's breakdown time is sufficiently short such that node j+2's breakdown time can

be placed in the blocked cycle time, the cylinder length is reduced and the number of

blocked cycles are reduced, increasing control unit utilization. The resultant cylinder is

shown in Figure 2.6.

10

Note that the iteration index of node j+2's breakdown has changed to indicate that the

breakdown is now from a previous iteration. The goal of wrap-around is to attempt to

shorten the length of the cylinder by an amount equal to the length of the breakdown time

of the last node without extending the length of the execution unit.

Control Unit Execution Unit
setupj idle

setuPj+1

executej

breakdownj+2 (-1)

breakdown j
executej+1

setuPj+2

breakdownj+l execute j+2

idle

Figure 2.6. Cylinder With Wrap-Around

In general, for one or two nodes j (and j+1) executing on a processor where node j

executes before node j+1, wrap-around is possible if:

setupj+l + breakdownj + breakdownj+l < executionj + executionj+1

as long as at least condition (1) is satisfied.

For three or more nodes on a processor, the general case becomes more complicated,

because there is a potential for the third node's setup time to occur during the second

node's execution time. In this case, wrap-around is dependent on which condition(s) listed

above is (are) satisfied.

Let there exist nodes j, j+1, j+2, and j+N, where j is the first node, j+l is the second

node, j+2 is the third node, and j+N is the last node on a processor with N nodes. For

II

exactly three nodes on a processor, j+N and j+2 are synonymous. There are three cases

for wrap-around:

Case 1: only condition (1) is satisfied. Figure 2.7 illustrates this case. Here, since

node j's breakdown is greater than node j+r's execution time, node j+2's setup time cannot

be overlapped with node jf Is execution time. Thus, wrap-around is possible if:

setupj+l + breakdownj+N < eXeC~Ofonj

Control Unit Execution Unit

setupj idle

setupj+ 1

execultej

breakdownj+N (- 1)

execute j+I

breakdow n j __I_______

breakdown j+1 idle

setupj+2

Figure 2.7. Wrap-Around (Case 1)

Case 2: only condition (2) is satisfied. Figure 2.8 illustrates this. For this condition

wrap-around cannot occur at all, since doing so would extend the length of the execution

unit.

12

Control Unit Execution Unit

setups idle

sctupj+1 exctJ

____ blockedj

breakdownj
ecXcutcj+l

SwtuPj+2

breakdown~j l c c uc +

widl

Figure 2.& Wrap-Around (Case 2)

13

Case 3: both condition (1) and (2) exist. This case is shown in Figure 2.9. For this

case wrap-around is possible if:

setupjl + breakdownj + setupj+2 + breakdownj+N < executionj + executionj÷,

Note that if neither condition (1) nor condition (2) applies, wrap-around is not possible.

Couftol Unit Euecudon Unit

setu~s______F tpj idle

setuPj+l

executej
breakdownj+N (-1)

bakdownj xexcuftj+i

"•'~+2

breakdown j+cutej+2

idle

* 0* 0

FIgure 2.9. Wrap-Around (Cue 3)

14

I1L ALGORITHM FOR NODE ALLOCATION

This chapter discusses the particular node allocation algorithm that addresses the issues

discussed in the previous chapter within the concept of the LGDF model. Initial allocation

of the nodes to processors is accomplished by the user, taking into account proper load

balancing. The remaining issues mae handled by the algorithms discussed below.

A. OVERLAP

Overlap is accomplished by first taking each process individually and scheduling the

node with the greatest execution time first Tis algorithm is illustrated in Figure 3.1. The

nodes are then scheduled on each process with regard to overlap as in Figure 3.2.

for i = 1 to uftlnumber-of _processors;
for processm Pi

j=l
while nodej != NULL

if executonj <= execution j+1
tamp=node j
node j = node j+l
j =j+l

endif
end while

end for
end for

Figure 3.1. Execution Cycle Sdmduilng Algorithm

In the ovelap algorithm, the second node on the processor is initially compared to the

fSt node. I the setup of the second node is less than the execution time of the first node,

then overlap can occur and the second node is scheduled afer the first node.

15

for i = I to total_number_of _processors
for processor Pi

j=l
k =j+l
schedule

while node j != NULL
while execution j < setuPk

k=k+l
end while

temp = node j+l
node j+l = node k
node k = temp
j =j+l

end while
end for

end for

Figure 3.2. Overlap Algorithm

If this condition is not true, the following node on the processor is then compared to

the first node and this process continues until a suitable node is found or until all nodes on

the processor have been checked. If all nodes on the processor have been checked and

none are found suitable, or if a node has been found which meets the conditions, the node

is scheduled and this node is then compared to the remaining nodes. This process

continues until all nodes on the processor have been exhausted. This scheduling method is

performed on each processor in tram. It is assumed that since the nodes are initially

scheduled in decreasing order of execution that the breakdown of the previous node will

likely be less than the execution time of the next node.

16

B. WRAP-AROUND

The wrap-around algorithm is shown in Figure 3.3. For each processor, the

breakdown time of the last node is taken and summed with the setup time of the second

node and the breakdown time of the first node. This sum is compared to the sum of the

execution times of the first and second nodes. If the sum of the setup and breakdown times

is less than the sum of the execution times, the last node breakdown time can be wrapped-

around. There are several other conditions which can also occur. Typically, for more than

three nodes scheduled on a processor, it is possible for the setup time of the third node to

for i =1 to totalnumberof _processors
for processor Pi

= 1
if breakdown j + setupj+l + breakdownj+N <-- execution j + executionj+ 1

start breakdown j+N @ (setup j + breakdownj + setupj+I) cycles
endif

end for

end for

Figure 3.3. Wrap-Around Algorithm

occur during the execution time of the second node after the breakdown of the first node.

In this case, the setup time of the third node is also summed with the setup time of the

second node and the brakdown times of the first node and the last node.

17

IV. RUN-TIME PERFORMANCE

This chapter describes the results for use of the revolving cylinder algorithm. The

programs used for generation of th results are fully described in Appendix B. Figure 4.1

is a graphical summary of the prognams and their related inputs and oukts.

A. PERFORMANCE METRICS

The performance evaluations for the RC technique were generated using an actual

application graph called a correlator [Ref. 41. This graph is illustrated in Figure 4.1. The

RC technique that was analyzed was the start after finish (SAP) technique. The results

from this technique were compared to an F schedulizg algorithm. Simulations were

performed on cylinders generated for both wra-around and non wrap-aound techniques.

Several initial assumptions were made for the RC cylinders The scheduler latency,

node setup and breakdown latency, and instruction size were assumed to be zero. The

read, write, produce, consume, and threshold amounts for an individual queue were

assumed to be equal. The queue capacity was calculated as eight times the queue thre]kl.

Nodes were manually allocated to pr based on load balancing and minimizing

queue contention; that is, no processor would simultaneously access the same queue for

reading and writing. As many memory modules as necessary to completely eliminate

memory module contention were then assigned to processors. The number of memory

modules required was based on the static representation of the cylinder generated by the

scheduler and mapping programs. Fight processom were used in the system and dhe node

to processor allocation was identia throughout the simulations.

18

"-wscedule ORE3 a

A~d -McI

NOOU

Fig =Lure41 eovn ylne umr

cyl~wwt W.NOCSUMAY.2f19-

1Input Node 2 FIXFL2=5=O

T-R=C=16384 T-R-C-16384

3 RAND~I=15000 4 BAND2mISOO

T-R-C= 16384 T=R=C=16384

5FIl1-1tXXNO 6 PI2-1000

T-R-C-409 T-R-C-4M9

7 PFr1.100000 8 ZUROFRIJ-=50

T-R-=4Miooo 13T-R-C-4M9 14 POWER'f=

11--CM216 UMUTPWR. SQRTwMSO

]Rgmr 4.2. Correlator Graph [Ref. 5]

20

B. RESULTS

Figures 4.3 and 4.4 illustrate the normalized maximum throughput for the correlator

versus the ratio of communication cycles to computation cycles. The communication costs

used for the mapping were varied from 3 to 23 cycles to transfer one word of data from a

processor to memory. These correspond to communication/computation ratios of 0.1 to

0.77, respectively. The theoretical minimum average input period was used as the

SG --- FCFS
>1 0.95 _SAF - No Wrap
= a.- -- *-Mapper- No Wrap
. 0.9 ---*FCFS New Map

P 0.85 5.--SAF - New Map

2 20.8 -4-Mapper- New Map

E 0.75

0.7.

0.65.

0.1 0.17 0.33 0.43 0.5 0.53 0.57 0.6 0.63 0.67 0.7 0.77

Ratio of Communication Cycles to Computation Cycles

Figure 4.3. Normalized Maximum Throughput vs.
Communication/Computation (No Wrap)

normalizing factor. This normalizing factor was calculated by taking the inverse of the

ideal cylinder calculation for one instance of the graph and multiplying by lx106. The

lxl06 factor is necessary since maximum throughput is given by the simulator in instances

per megacycle.

21

The 'mapper' points listed in the legend represent the maximum theoretical throughput

for the compile-time representation of the cylinder. This value is obtained by taking the

inverse of the end time of activities obtained by the map program multiplied by Ix10 6. In

Figure 4.4, there are two representations of the mapper. The first is a 'flat' cylinder. Each

1 -0-- FCFS
'I& SAF - With Wrap

7 A-- SAF - New Map
0.95- Mapper Flat

0.9- Mapper-JaggedS• 09 "", - •1•.•.,.•. -41• lMapperF-New Mdap

0.85

S0.8

O. 0.75

0.7

0.65

0.6

0.55

0.5 I I 1 1 1I 1 1I I 1I

0.1 0.17 0.33 0.43 0.5 0.53 0.57 0.6 0.63 0.67 0.7 0.77

Ratio of Communication Cycles to Computation Cycles

Figure 4.4. Normalized Maximum Throughput vs.
Communication/Computation (With Wrap)

static cylinder slice of the graph ends at different time, represented as a number of cycles.

The 'flat' cylinder takes the greatest end time of all cylinder slices and uses that value as the

average end time of the graph. This means if a cylinder slice ends before this average end

time, idle cycles may be added to the execution unit, thereby decreasing the calculated

22

throughput. The 'jagged' cylinder, however, takes into account each individual cylinder

slice end time, and uses the average of the end times over all cylinder slices as the average

end time. Thus, maximum throughput for the 'jagged' cylinder is greater than the 'flat'

cylinder.

In both Figure 4.3 and Figure 4.4, note that as communication costs increase, SAF

results in better throughput than FCFS. This is due to the ability in SAF to map the nodes

to minimize contention [Ref. 2].

Since the node to processor allocation was identical throughout the simulations, it was

desirable to see if different allocation at various communication costs would have an effect

on throughput. A separate node to processor allocation was tried for 15 and 20 cycles to

transfer one word of data from a processor to memory. The allocation of nodes was

modified only slightly, i.e., only one node was allocated to a different processor. These

points are indicated in Figures 4.3 and 4.4 as 'New Map'. It is clear for both wrap and no

wrap cases that the revolving cylinder values (SAF and mapper) are affected by slight

changes in the node allocation.

Figures 4.5 and 4.6 represent the normalized response time and the coefficient of

variation of normalized response time for both the no wrap and wrap cases, respectively.

The normalizing factor used in Figure 4.5 is the number of execution cycles required for

the completion of one iteration of the critical path of the graph. Note that the response time

for SAF (both no wrap and wrap cases) is lower than FCFS at high communication costs.

Note also that although SAF no wrap has a slightly better response time than with wrap at

high communication costs, modifying the node to processor allocation (New Map) has a

significant affect on the no wrap case. Thus, it is possible to improve the response times

for both cases by changing the node allocation.

The coefficient of variation represented in Figure 4.6 is a measured comparison

between the response times of all graph instances to the average response time. The lower

this number, the closer the measured response times are to the average [Ref. 2]. SAF with

23

wrap appears to have the best overall performance as measured by coefficient of variation

throughout the range of communication costs. Again, however, modification of the node

to processor allocation significantly affects the results, thus indicating that coefficient of

variation could be improved over FCFS for both SAF cases.

8
7.5

7
6.5 / 4oN

1 - -SAF -With-wrw

25

0.5 Map

0.1 0.17 0.33 0.43 0.5 0.53 0.57 0.6 0.63 0.67 0.7 0.77

Ratio of Communication Cycles to Computation Cycles

Figure 4.5. Normalized Response Time vs. Communication/Computation

Figures 4.7, 4.8 and 4.9 represent normalized maximum throughput for

communication costs of 3 cycles, 5 cycles, and 15 cycles versus load. Load in this case is

based on fractional multiples of the maximum throughput case (1.0 in the figure). These

multiples correpond to a range of graph input from severe lack of input data to overflow of

data. From these figures, SAF results in slightly better overall throughput at higher graph

loads versus FCFS. Although SAF no wrap performs better than SAF with wrap at low

communication costs, SAF with wrap achieves a higher overall throughput over SAY no

wrap and FCFS at high communication costs for the entire range of loads, which is the

desired result.

24

0.3 0FCFS

0.275 -- 8-SAF - WNo wrap,

0.25 *-ISAF-No Wrap-
aIW4j 0.225NeMa

*i ~! 0.2 -~-AF-Wna-New
S 0.175 Ma

0.1 A 01

0.125.
0.1 A

0.075
0.0547

0.1 0.17 0.33 0.43 0.5 0.53 0.57 0.6 0.63 0.67 0.7 0.77
Ratio of Cormmuncation Cycles to Computaton Cycles

Figure 4.6. Coeffldent of Variatioo v&. Comum. UJOOComnputation

S0.75-A
0.725

Sj0.62 -Q.- SAF - No wraj
0.6 - -SAF -Witdi

0.525.
0.5.

0.4 0.6 0.7 0.8 1 1 .2
LAW (Data %nput Rate as a Multiple of

Simulate Maximum Thwoughput)I

Figure 4.7. Normalzed Maximum Througput vs. Load (3 Cycles/ord)
(0.10 ComunocatdonJcompubUtofl)

25

0.8

0.775

1A 0.7

S- 0.675

.E 0.65
0.625 - e CS

0.6 -B EaSAF-Nowrap

V 0.575 -1&SFWith wrapE10.55

0.525

0.5 I I I I

0.4 0.6 0.7 0.8 1 1.2

Load

Figure 4.8. Normalized Maximum Throughput vs. Load (S Cycles/Word)
(0.17 Communication/Computation)

0.8
... ~ 0.75 - No wrap

S 0.75

S 0.675
.C 0.65
S .625

0.575
0.55

0.525

0.5I I I

0.4 0.6 0.7 0.8 1 1.2

Load

Figure 4.9. Normalized Maximum Throughput vs. Load (15 Cycles/Word)
(0.50 Communication/Computation)

26

Figures 4.10, through 4.15 illustrate normalized response time versus load and

coefficient of variation versus load for the same communication costs as the three previous

figures. From these figures, SAF is shown to have the best overall response time and

lowest coefficient of variation throughout the range of load.

7G
6.5-- SAF - No wrap

-_&-SA - With wrap1.1 5.55

4.53.5
3

2.5

0.5
0

0.4 0.6 0.7 o0. 1 1.2
Load

Figure 4.10. Normalized Response Time vs. Load (3 Cycles/Word)
(0.10 Communication/Computation)

27

6.5 1----SAF- No wrap
65.55 5 - -SAF"- With wrap

5'

3.5
•o .s 2 ••'•"
"VE2.5.

1

0.5
0o

0.4 0.6 0.7 0.8 1 1.2

Load

Figure 4.11. Normalized Response Time vs. Load (5 Cycles/Word)
(0.17 Communication/Computation)

76.5 13 SA. No wrap
?A 6 ---&- - With wrap
6.5

4.5

4.g4
3

F E 1.5 __________________________ _ W o

0.5

0.4 0.6 0.7 0.8 1 1.2

Figure 4.12. Normalized Response Time vs. Load (15 cycles/Word)
(0.5 Communication/Computation)

28

0.3 - FF

0.275 -- SAP- No wrap

O.25

11 00.
• 0.175

0.15

0.125
0.1 10

0.075
0.05

0.025
0 I

0.4 0.6 0.7 0.8 1 1.2
Load

Figure 4.13. Coefficient of Variation vs. Load (3 Cycles/Word)
(0.10 Communication/Computation)

0.3 --. 9--FCFS

0.275 -8-SAF - No wrap
0.25 . -- SAF - With wra_

0.1 -0.2.

0.075

0.05 \

0.025 .
0 W

0.4 0.6 0.7 0.8 1 1-2

Load

Figure 4.14. Coefficient of Variation vs. Load (5 Cycles/Word)
(0.17 Communication/Computation)

29

0.3 -- -- FCFS

0.275 -3--SAF - No wrap A
0.25 -&-SAF - With wrap

0.225

0.175A
0.0 15

0.125 '0.1

0.4 0.6 0.7 0.8 1 1.2

Load

Figure 4.15. Coefficient of Variation vs. Load (1S Cycles/Word)
(0.5 Communication/Computation)

30

V. CONCLUSION

This thesis described the issues involved in node allocation and described a program

implemented to resolve those issues. An addition to the RC technique, wrap-around was

also analyzed as an improvement to the compile-time implementaion of the graph.

A revolving cylinder technique, start-after-finish, was studied and compared to the

First-Come-First-Served technique for a large grain data flow graph model It was

demostrd that RC provides overall better throughput than FCFS, particularly at high

communication costs. In addition, it was shown that the RC technique is sensitive to

cylinder mapping, especially at high con mnunication costs. Thus, it is important in the

analysis of the RC technique to optimize the mapping for each instance of communiation

cost.

A. FURTHER RESEARCH

There were several initial assumptions that were made for the graph model that could

be removed for future work.

1. The number of instructions for each node was assumed to be zero. Analysis

should be conducted with variable instruction lengths.

2. Scheduler latency was also assumed to be zero. This quantity should also be

varied and its effect on the RC technique studied.

3. Since the RC results were sensitive to cylinder mapping, it would be desirable to

find an optimum cylinder mapping for each level of communication cost From this a

heuristic could be developed such that an extra program module could be added to the

existing programs to perform this task automatically.

31

APPENDIX A. NODE ALLOCAT7ION PROGRAM

fl LIEUJTENANT JOHN P. CARDANY, U.S. NAVY
// 20 APRIL 1994
fl NAVAL POSTGRADUATE SCHOOL
11 ADVISORS: PROFESSORS SHRIDHAR SHUKLA AND AMR ZAKY

fl/Large Grain Data Flow Node to Processor Schedule Piogram
II achedule.C

#include -dosateam~h>
#include dfsteam.b>
#finclude <iomanip.b>
#include <stdlib~h>

#finclude "node-alloc.h"

node...alloc cylinder; //define a cylinder as a node allc type

unt
maino

cout «< %%nnLARGE GRAIN DATA FLOW NODE TO PROCESSOR SCHEDULING
PROGRAMNAn";

cout << %~ALLOCATING NODES ... In";

//System calls
cylinder.deflz3 timeso;
cylinderniad~processor fi~O
cylinder.rea&.queue-.fileo;
cylinder.changejiode...fle;
cylinder.order...ndeso,
cylinder-sequence nodeso;

cout «< "WEND OF PROGRAMWn;
rleturn0-

32

U LIEUTENANT JOHN CARDANY, U.S. NAVY
l 20 APPJL 1994
NAVAL POSTGRADUATE SCHOOL
ADVISORS: PROFESSORS SHRIDHAR SHUKLA AND AMR ZAKY

II Node Allocation Class Header Mile
II nodealloc~h

ifdxedfNODE__ALLOCH
#define NODEALLOCH

#include <fstream.h>
#include <iosfeamJh>
#define newln Nn'

class node_aloc
{
private:

II Stncture to define queues
sMnct queue_type{

int queue.id;
int sourve_node;
int sink-node;
long writeamomnt,
long readmount;

fl Stuicture to define nodes
sMuct node.type

int nodes..per c
int nodejid;
long instrjsize;
long setup_time;
lng exe timc;
long breadown;time;int proc-typ;
10ng SUA..fme;
!Mn end_time;

l;

II SUU to define ORDERIN elements
smut onrdwintype{

int nodeid;longstartjim;
};

User inputs to define system

33

int number_of_nodes; P.' Number of Nodes in the System
int number..ofjqueues; I Number of Queues in the System
int numberofprocessors; / Number of Processors in the System
long latency; / Fixed Scheduler Latency
long fixedsetup; fl Fixed Setup time (a)
int comm; fI Communication Tune for One Word of Information
long setup, breakdown; //Setup and Breakdown Tumes Per Node
queue-type queue[250]; #I System Queues
node-type node[250]; fl System Nodes
node-type order[50][50]; //Matrix to store Node structures
node.type new..order[50][50]; //Matrix to store ordered Node Structures
orderintype ORDER[250]; l/Node order matrix

public:

Class Constructor
node-alloc0;

// Function to load timing information into the system
void definetimeso;

Function to read number of processors into the system
void readprocessor...flleo;

#I Function to load queue data into the system
void read_queue.fileo;

II Function to load the node data into the system
void changenodefileO;

I Function to Order the Nodes and Create t ORDERJN File
void order_nodeso;

II Function to calculate the unused execution cycles
void calc_unused_execyclesO;

Function to implement wrap-around
void wrap-aroundO;
I/Function to Create cylinder file
void make_cylinder file(long);

I/Function to print processor statistics
void generate-processorstats(intlong,longolonglonglong, long);

//Function to print cylinder statistics
void generatestastitcs(longlonglonglongjlonglongjlongjlong);

34

#I Function to imorder the ORDER.IN file sequentially
void sequence..nodeso;

IICass Dertor
-node-allocQ {)

1;
Wendif

35

I LIEUTENANT JOHN P. CARDANY, U.S.NAVY
/ 28 April 1994
NAVAL POSTGRADUATE SCHOOL
II ADVISORS: PROFESSORS SHRIDHAR SHUKLA AND AMR ZAKY

Input-Output Data Class Source File
// node-alloc.C

#include "nodealloc.h"

#include <iostreamb>
#include domanip.h>
#include <stdlib.h>

f/Class Constructor
node.alloc::node.allocO{

number-of.nodes = 0;
number-of-queues = 0,
number-ofprocessors = O;
comm = 0-,

l Function to Load Trming Information into the System
void
nodealnoc::definejmesQ
{

cout << "Wlixed Setup Time (cycles) : U;

cin >> fixedsetup;cout << "nWord Communications Time (cycles) :1w;

cin >> comm;
if(fixed-setup < 0 11 comm <0)I

cerr << "lnnvalid Communiaton Tmen";
exit(o);}

Y Function to Read the Processor File
void
node_alloc: ,rad.processor.f leW{
ifstram processorinpuLtfile;
proessor-input..file.open(FPROCS.IN);
if (!proce _isrjnp..e)I
cerr << "Cannot Open file PROCS.IUAn;exit(O);

processor-input..t >> number_of...processors;

36

cout << InNumber of Processors: "«<<number..of..processors << "WW";
processor-jnput..filccloseo;

#I Function to Load the Queue Data 1%l
void
node..ailoc:xead..queue..AtO

Ifatraque uempuffle;
!qeujpu=nQUUSM)

cerr «< "nCamot open file QUEUESJN~n";
exit(O);

ueue-ipw.fptfe >> number-of..queues;
intcu = -,cnt < number-.of-queues; cut++.I-

queue-jnputLfle»> quenef cut].qumued;
queuejnputfile » queue[cut JIsourvejaode;
queuejnput.file >> queue[cnt].smW..ode;
queuejnputie»qee cut J.write-amuount;
queue..nputffle >> queue[cut].readjamount;
if (queue[cut J.queoejd <-- 0)
I

cerr << "Wnuvalid. Queue ED or Wrong QuautityWn;
exwz();

if (queue[cut].writc...amount <O0H1 queue[cut I read...mount <0)

cerr «< InInvaid Parmneter for Queue: " «setw(6);
cerr << queue[cut J]qeuejd <<endL-
exit(O);

for(nt cntq =0- < cut; odi.)

if (queue[cniqJ).queuedW= qUeUe[cutJ].queujd)

cerr «< InDuplicaled Queue ED: " << wtw(6);
cerr «< queue[cut].queuejd «<emil;
exit(O);

queuejnpuftjlexloseO;

#I Function to Canage die Node Data Fie
void
node...eloc::.chapge;jaode&.fiW

ifstream uode-iuput-fit;
uodeiuput.Ale.opeu("NODES.IN");

37

if (!node-jnput~fdle
I
cr << "nCannot open file NODES.Ifn;Z
exit(O);

ofsftrm node...output...fll;
node..outputfile.open("TEMP.OUr);
mnt nid, Lsize, P...type;im

unigned lone sjne, ~ie b...time; lls=setup, b=breakdown, e=execution
node~p » number..of...odm-
node...output...fle <<uumber..ofjxioes <<newin «<newin;
for (iut cut = 0; cut < number...of..nodes; cnt.-+

nodejnput..Ale »> nud »> Lsize »> s..tme »> etime »> b-.time »> p-type;

if (x.Jd <=-0)

cerr << "In~valid Node ED or Wrong Quandity~n"
exit(0);

if (s..tm <O 0H c-ime <OH1 bjime < 0 1ULuize<O0)

cerr << "%luvalid Parameter for Node: << .cetw(6) <<ujd «<endl;
exit(O);

long setup =0.
long breakdowu = 0
for (int cntq =O0*cutq <uumber...of..queues; cutq44

iff(queue[cutq J.source-node =ad

)breakdown += (comm * qumu[cutq].write....mouut);

I
setup += (comm * queue[cutq IJread-amouut);

setup += fixed~jetup;
breakdown += flxedjetup;
sjtime = setup;
b tim = breakdown;

node-.output..flle << u~id «< setw(4) << Lsm' <<setw(8) << s...&m <<setw(12) <<
e-time <<setw(13)z< b-.time c<<stw(14) «<pjtype <<newin;

nodejnput..ffle.closco;
node..-outputflle.closeO;
systmC'mv NODESIN NODESJN.ORGO);
system("mv TEMP.OUT NODESIN');

38

fl Functon to Schedule fth Nodes and czaem fth ORDERI file
void
node-aloc::orderjiodesO

in op count. tailjindex, swM-apidx;

nodejype 4d-..tr *CuiTa...pr, aiIp.t

nodejypnoe ThMP...NO

node~jnputfile.open('NODES.IN);
of0am~r OWNtputjile;
order-.uput..file.open("ORDER~LW);
node-input..file >> numbcr-.of...odes-

for (mnt cnt = 0- cnt < n ner..ofjaodes, cnt4-.) /IPlacenodes inanmara

node[cutj.nodes...per-.processor = 0;
node-inpu~Jiic » node[cnt].nodejd;
node mput..flle »> nodefcntJinstr..size
node-imput.file >> node[cutJlsetup-timc;
nodejnput..file >> node[cntJ~exe&im;
nodejnputjile >> node[,cntj.breakdown...me;
nodeiupucfile »> nodeacnt.proc..,ype;
node~mcsntJstrttie = 0;

for (mt i = 0;, i < number...ofprocessors; i++. //Place the nodes in two Wx matrices

count = 0;-

for (nt j =0j < number..pfimndes; j4-i

f (nodeojJ.procjtype = i+l)

order[countj[iJ = nodet];
ordertcoiintj[ilimndes-M-e..processor = count+l;
new...rder[count][iJ -- nodeffl;
new-.order~countjriJ~odes..per..pwcoo r - count+1;

ord~contjijmnoejd = NULL,-
nww-order~countJ~jJ-nodejd = NELJL;

fl Order Nodes in decreasing Exe ime

for (minj = 0;. j < number-of-prcmsor j++)

39

ant node-index = 0;
SWAPPED = 1;
While (SWAPPED)

SWAPPED = 0;
for (i = 0, i < number..of~nodes; i4-t)

if (orderfi[Qj.exejime < order~i+1J]j].xcx..ize) /Ithen swap nodes

ThMP..NODE =orderfiJ~jJ;
ordwri] I] = ordewi+1JUJ;
order[i+1j]W = ThMPff_NODE;-
SWAPPED = 1; //and set a flag

#/Order nodes by comparizg Exe and Setup tumes

for aj = 0- j < nunber-of..processors; j++)
I
int node-index = 0-,
T-.MOVE =0-

HeacdpSr = &arder~nodejndexJW;
Tail...tr = &ordednode -ndex+1JW;
Cuxtrper = Tail-.pr

if (Tail..ptr->modejd ==NULL) #/ only one node
I

<< nwin;ordet..output..Ale «<Head-jMt->node-jd< scetw(S) <<Hea&..ptr->staztdine

while (Taiptr->nodeid != NULL) I/icheck ali nodes on a proicessor
I
SWAPPED = ,
T-dOVE = 0-,

swap-.index = nodejndex-

while (H ... tr->exejime < Tafl-pr->setupjime) //keep swappo nodes uniti

taiUndex = swapindex + 2;
Ta.M=&ardettailjndexJ~jJ; H/point to next node to check conditionaai

T-)OE = 1; h/et fag to indicate ai ptr was moved
swapmidexi4;

#I swap Tail..ptr and Currjtr to put tai node in position after head node

if (T-AOVE && TaiLj&e->ndejd !m NULL)

40

TEMPNODE.no _ded Curr..w-'node~id;
ThtdP.NODE~instrfsiz = Cuff.pmr->inatr...ur;
TEMP-NODEaeupjime = Qxrjr-W'eeup-.dme;
ThMP..NODE~exe ime = Curr..psr->'xetime;
TEMP-NODE~brodownfirmne = Curptr-)'bctakdowl-filne;
ToMPYOD~procjtype = Cper-P"Procjtype;
TEMOP...OE~sutaittim = Cuhr.pr-ýW>tarLtimc;

rrffjpt->ndejd = Tjt-r-,nodejd;
Curr..pW-A'nsWr..izc = Tail.ptr->insk.Aze;
Curpr ->p....bme = TiL...p>stzuep...bin;
Cuzrr.ptr->mexe..Um = Tat ->ezej2D3z;
Cturr..pe->brekdown...bme = TaiF&->bukdown...tii
Cuir.pr-j& procJYPe = Tait~ptr-,Plocjyp;
Corr...t-'atarmtize =rTaLr-,4Wztilme

Tai~r-inh~.si E W - TWPJ4O stimbs.e;
T~pr-~eetpjie =TEMYOEjaemut-tme;

Taipr-cxe Tm e W-NPjOD&=ec...;
Tailj&t->bIladown Caw = T1PNODEbreakdown..dzoe;
Tail..-ptr-prcype = TO"..NOC~procjp;
TaiU-pr-,4talttime = 'IEW-NOF.StWz-tm;

SWAFIME = 1; I/act fta iD inicme nodes swapped

Curpt-iea&tie =(Ha&.t-~eup..bne+ Hea~&pt->startime);

fl Nodes were not swapped. only two nodes in army
if (nodejndox=0) //m&deis had par, pmnode in nowarmay

order .ouqpugfl < «EIWpwr>uode-Jd << etW() <<Hcad..ptr
>smtaimtie << newln

ztnr.order~nodejndexJ~idjd Hp-> ded
nneworderfnode-indexJ Jnsm-sze = Hoodp~r~ntr.a;
new...rde~node-indehlJWmee-.bin = Hed- ,czeji. Me

nmw..orde~nodejndxJW(f.breakdown~time = HEa&.p-
>breakdowntime;

acw...orde~node-indexjW.procjype Hea&.ptr-7pl=cypc;
nw...ordednodejnhdcxJWA.smaLtmc EW&de-S4a-rL~kimc;

//fat node afte bead node imD ocder Mfe and arm
order .outpuLfil << ur...pe-,nodjd << aetw(S) << CT...pe->.tartidmm <

newbn
eww-crfetnode-kdex+1JWlawdejid = Cm.pr-jWn>ode-id

new...order~node;jndex+1J 81 inst-size = Cwr...pt->inWst.uize;
noworer~od-jnt .aMetup-tiune = cmf..pr-s)eetup..tme;

now-orderfodejndex+1llhpnejype = uorr...p>eer-~¶U=p;

now-.ordertnodeindex+1J1jJmakdartjimc = Qur.pr-swuAinteddw-i

41

if (Tail-.ptr->nodejid != NULL && !SWAPPED) //Nodes were not swapped,
I //no node matches reqwrement

I/so sked node after head node
Tai~ptr->start-time = (Head-ptr->'etup~time + Head...pv->stait-time);

if (nodejindex ==0)

order...output-file <<Head-.ptr->nodejd << setw(g) <<cHead..pv-
>start-tiie <<newin;

new..prder[node-indexljj].node-id = Head-ptr->node-id;
new..order[node-indexoJ~Jinwstizc = Head-pt->instr-saze;
new-order~nodeindex]Wietup-time = Headptr->setup..time;
new..-ordcr[node-index] [j.exejime = Head.ptr->exejtime;
new..prder~node-indexjUJ.breAkdownjime = Hlead.ptr-

newý-orderinode indexJU].proc-type = Head~ptr->proc-type;
new-ordernode-indexJW]-swarttiine = Head.pt-W-star~tzfme;

order-.outputjle <<Taptr-am>odejd <<setw(8) <<TaiUptr->startjime «<
newIn;,

new...order[node-index+lJOJ.nodejd = Ta~iUpt-'node-id;
new-order~node-index+I]lJW-isuizw = TWIptr->instr-xize;
new-o.rder~node-index+lJb.sewp...dme = Tailptr->setup...ame;
newý..order[node-index+1JWl.exejzime = TaiLj-w->exe-tme;
newoa~r~node-index+l1JW.bm~kdown-time = Tail-pt~r->breakdown-time;
new..order~node~jndex+lJj~rc.tp al~r-f~cye
new...order~nole-index+110jWfstaiiru = TaiL.tr->'s=tauime;

elseO II as node to be scheduled

if (Curr..jitrnode-d != NULL && !SWAPPED) //sked las node in the army

Cuztpr-I&'starLtime = OadLptr-,>.etup~tiine + Head-pcr->starLtime);
oiIr....output-ffle «<Curr-Vt~r->node-id <<setw(g) <<Curr-.ptr-

>start-time «<newin;
new-order~nod dx1J1JW oej Curt-,'nodeid-,
new...ornder ndex1j~jinstr-siz = Curr..ptr->instr-size;
nevw..ordernoejnex1JWlatupjtime = Curr..ptr-seeaipjime;
newý-order~nodejndex+lJ~J~exejnne = Cr-&>x~ie
newiorderfnode- mdex+1JOJ.breAkdown-time = Curr .ptr-

>breakdownjwime;
new..order~node-index+1J0].proc-type = Curr .ptr->'proc-type;
new..prder[node-jndex+llbjjstarLtime = Curr-ptr->stM-rixme;

nodejndex++;
Headjxtr = &order~nodejindex]bW;
Taiptr = &order[nodejndex+1bj;
Curr-ptr = Tafl..ptr,

42

node-inpuLfle.dcoweO;
ore-u~wmc d.kweO;

#/CaklMuuse xmdn qdes
void
nodcjfloc::cakc~nudexcwcycls

nodejrype *Hea&.paw, OTW~ptr *Curr...pu.
kIon msued-exe..cyces = .
long wueLunuad..exe.cycis = 0

for (min = 0; j < umber-of-procemrsj4-)

int node-index = 0

Head...pt = &ewwju*4cnodejndexlJ~;
Tailjr = &nwworderfnode-index+1JUJ
Curr..pe = Taije

unuad-execycles += IHead~jWeempjine;

while (Taiptr->nodcjd != NULL)

int swapindex = node-jndexz

unucLexe..cyces -w- Taipt~r-,.etupjime - Headptr->exe..dm;

if (Hcd.eW-,w-bmeakowA..me > Td~pt-,ce.Ane)

int uAindex = sa'jdex Z2
Tail*..Ptr = &oiIe~tftjnexA;
unusdea-decces += Epad >brakdown-dum - Qarr..ptr->'xejime +

Tanpsw-eetupjime +Qur..pv-=bcadwndme;
node-ndex44;

nodejndeX4-+;
Head-.ptr = &new...o.r[nodej-ndmexbjW;
TaiL.ptr = &aw...ordet~nodejndex+1JW1;
Qazr...pt = Takir..e

if (TaiL.pwr->node-d = NULL && Hea&Lpt-oode- ' 1= NULL)
f~ IMha node, add b~reakdown

unuaed-excsycie += Hcwad-breakdowlume;

tota-unmue&.ez..cycies 4- unuuad..ee..cycle
uumaed-exc..cycies = 0

43

cout << "Total Unused execution cycles on:" «totalunuaed-.exe...cycles << cycles
«<newin;

fl Function to implement the wrap-around
void
node-alloc::wrap-m.aoundO
I

fl Intializ values
long IArgest~cYLdm = 0, UoaLslice-ti.mes0-
long idle-exe-cycles = 0, blodkmd&exe-.cycles 0=
long idle...crl..cyces = 0, blocked.arl-cycles 0,
long blocked-.procsitri = 0, bALoe&proc.ee =-
long idleproc..ex =0 Oýlwproc...ctr = 0.
long tota idle.prcmxe = 0, totalidle..proc..utr = 0-,
long taL-blocked-proc-.exe = 0. totaLblocked-jrocstai =0-
long exe...packing = 0, ctd.packng =0-

node-type *Ha-, * TaiLptr, *Nexcppr,

cyll~ime-.outpu~.flle.open("CYLTIBM .OU'r);
if (!CYlTime...output-fiie)

cerr «< "nWanot Open file CYLTJMES.OIJTh";
exit(0);

ofstream slice-putputfile;
slice-.ouq-tpu..fl.open("slice-timc~out");
if (!slice..output-fiie

cerr «< InCannot Open fie slicejimeoutWn;
exit(0);

fl calculate the number of nodes on each processor

for(int k = 0; k < numbet..ofprocessors; k+i+)

int index = 0

Head-ptr = &new..order[indexj[kJ;

while (Head-.pir->nodeid != NULL)

index++;
Head-.ptr = &ew...order[indexJ[k];

44

new..orde40]l[k].nodes..pr.procesor = index;

for(mnt j = 0. j < nuiber-.of-pjrocessors j.++)

Hcad-jn = &new..order[OfjW; //point to first node
Heiptr->star~time =0-

int numNodes = Head-pe-r-nodes..jer.processor

long cyijime = Hea-&.p->setup-ime;
blocked-proc.-ctl = 0-
blocked...roc..exe, = 0-,

int FLAG = 0, STUFFED = 0, PUSHED = 0-

if(numNodes = 1) I/Only one node on processor

cyijime += (HeW.t-Sa'exejknie + Heacdptr->krekdown-time);

ifHe~ad-ptr->hreakdowq time + HleacL..pt->setup..iie < Head.ptr-,ceuime)

Head-WF->end..tim = cyLtime - Head.ptr->breakdowvnjime;
cyijime -= Head-pt->breakdownjime;

Hcad...pt-a'endjtime = cyLtime;

LarpgeacyLtim = Hca&.ptr-,end-time;

for~int i = 1; i < nuinNodms i+-*) #I Mote d=a one node
I
Tail-pr = &new-o.rdaziJED; fl point to next node
Tailjtr->smartirne = cyLjxe;
Next..ptr = &new-.orderiWlJW;

//Several conditions ame possible which modify dhe way the blocked cycles ane caculated

Condition 1
if(PUSHRED && Next.pWr->node-jd 1= 0) I/PUSHED =>A node's breakdown

{ ~/was greater than another node's
Head..ptr = &new..ofdezfi~j]; Azee time
Tail-Vpt = ftew-.orderri+1)jW;
++i;,
Nex~ptr=&nw.oeriljJ
cy~timne += Head ..pt-eetupfiMe
TailftrP->start time = cytIdme
PUSHED =0;

45

I/Coxndton 2
if (!FLAG && !PUSHED) //FLAG=>

if (HadSr->exejtime > Tagptr->aetup time)

cyLtime += Hedpt-icxemjime;
blocked.cul-cycles +- Hc ~j-ce=ime - TaiLptr->eetupjime;
blocked-proc...ctr += He r-jWexe...dm - TafiS&->aetqp.tzm;

else

cyljzn += Tail-i&r-meetupjnme
blocked-exe.cycles += TaiLptr->setup..me - Headpt-~m-exe-timec;
blocked-proc-.exe += TQ-ptr->seewpjzm - Headpr->cxejfime

I/ondition 3
iW(STIJFFED && !PUSIHED) //STUFFED=> breakdown of a node Andstpo

4 I~~/next node oc=u durig eme of another node
Head-&.t->cnd..tie = cyLuim + Head...pw->breakdown-uice

I/ondition 4
if(Head-jc->breakdown-fim < TaiL4*->euedme && !PUSHED)

cyltime += Taflptr->exejina;
FLAG = 0;
Td~&pe-,endjtire = cyLtime + Tail-'b.-Arakdown-.tivie;

I/ondition 5
i((Head-ptr-breakdown-fime + Next~pi-esetup...timne) < TaiL~ptr-mezetime

&& .et~r~nd~ != 0)

RLAG = 1;
STUFFED = 1;
Nbdxs&.ptr6artjim = cyLime - TaiLm jx -umx..tme + Tailjptr-

Amadownume;
bloc berctrl-cycles 4= TaLt Jt->exe.. me - Headptr->bveakdowzLtim -

Ncxt..pt->setupjime;
blokxfwdproc.ctrl += Taffitpr->exe..$ - Head..ptr->bzakdown_&wn -

Nkxtptr->setup~time;

else

ffif(ex.pr->nodej-d != 0)

STUFFED = 1;
FLAG = 1;
Next..ptr->smzjdm = cyLtme - Taffimr->extjime + TaiLpt-

>breakdowniume;

46

blocked-exe-cycies += Head-lpt->breakdownjime + Next~ptr-
>setwptirm - Tailpr-,'xeumc;

bloc ed-proc..exe += Head-ptr->bsmakdown-time + NcxLptr-
>setup-die - Tijail-rr)ee-nbc;

Tail.pir->cadfime += blocked-proc-exe;

else

if Nxt.ptr->'node..Jd = 0 && PUSHED)

cyLtimne += (Tailjptr->meetup-time + Tai-pte=ejim);
Tafl-ptr->'cnd time = cyijizu + Tail-ptr->breAkdowntimne;
cy~time = TapR-a-end-thmc;

else

if('PUSHED)

PUSHED = 1;
cyLtiNUC += Head43tr->b1eakdownjzme;
TW~ai~h->en-dj = cyLtini + Tailpj4breabdown-time,
cyljim = Tai~t-.cnd-ime;
bWodW&exe...cycles 4= Head er->bIMakowz tune - TaM-,Cxejme,
blo~ed-poc-exe += Headper->biakdonvnume - Tai-ptr-,exc...time;

I

Head-ptir =&newoprder[iJW; #Pitt atnd npoeo

ifode num~podes != 1 &&!SPUSHED)& !UHD

I

Hcad...pbw = newtder[OW; =on todp->~pd +ia noexr.tu onm processor

Are(ko>b-ine; w..ze+He~t~bekon..ue+Nx~r

cyljimle -= Tailt..ptre>Iakdown..bmc;

47

>exeif (Next..ptr->setzupjime + Tailjptr->breakdowntime <c Head-ptr-

Head...ptr->enCtLtme = Hea-ptr->setup...tme + Hea&.pt-jw'exejixne +
Head-jur->breakdownjimc;

blockedsutiicycles -= Tail.jx->breakdowiLtiine;
blodck -proctti -= Tail...pt->breakdown-timc;

else
Head..Pti->end-time = TaiLptr-aind-time + Head.ptr->breakdowt~time;

I
if(STUFFED)

nodepype *ThiWptr = &new...order[2JW];

if ((TwPtr->bzmakdown~ttme + Headptr->breakdowi~time + Next-ptr-
>setup...Wm + Th ...ptr->setup-ow~ <-- Headclpt-'exejime + Nexptr-'exejame) &&
Headptr->noe&des-r...procesor != 1)

Tailptr-cend-time = Head.ptr-eetup..tiine + Next..pbr-setu~p-ime +
Talplr->breakdownjime;

cyL timue -= Tarj->bt=akown *in;

>exe-if (Next..ptr-msettup-ime + Tail..pt->breakdown-time < Head.ptr

Hptid-PVend time = Head&.pt-.stup-jime + Head..pt->exe...tme +
Head..jwu->breakdownjime;

blockied.cubcycles -= Tailjtr->breakdownLtime;
blocked-procsctrl TailWp->bimakdwn-time;

else
Head-ptr-,end-time =Ta-W-ptrend...time + Hea&..pt->biukdown...time;
Th1Wptr->Stmr-&in = Hea-W-ernd-dme;

else

if(PUSHR3D)

if(NextW->setWp...*m + Tai~pt->bimakdownjtime <-- Head-.ptr-

I
Taptr-jamcnd-.time = Headptr->setup..time + Neut..ptr->setnpjtime +

TWptr->breakdown-tame;
cyL-timme -= Tl-a1jt->bieakdownjime;

tou~slice.de += cyL-ime; #I add aui cylinder times
slice-output..Ale <<cyLtimw <e «md;

48

total~blockted.proc...cu += blockted..roc..cutr
totLblocked-.proc-.exe += blocked-.proc-.exe;

cyme...-output-fiie <<j+l I«<setw(8) <<cyLtime c<<endl;

Hea&..ptr = &new-.order[OJ U];

exe...packing = 0, ctrl..packing = 0;

for (int p = 0; p < numNodes; p4+) /Ialclate cxc and control unit packing

Hea&..ptr = &new..orderjpJW];
exe...pacing He= Hetr-'exe..ime;
ctrt-packing += ead-ptr->setup-time + He-adptr->breakdown-.time;

/Calculat idle cycle times
idle-.proc...exe = cyLtime - exe..packing - blocked-.proc..exe;
idle-.proc..ctr = cyLtim - ctri..packing - blockted..proc...cl;
total-idle-.proc..exe += idle..proc....exe;
totaljdle...proc.ctrl +=- idle..procctrl;

idegeneate-processor-statsj+lI, cyl~time, xeie.packing, cbtrlpwddn&, idle-.proc-exe,
ide-proc..ctrl blocked-proc-exe blocked-proc-swl);

Slice-output...file.closeo;

fl Find the largest end time for all processors for "flt cylinder

forint m = 0; m < number...of .processors; m++)

int index 0;

Head-ptr ft&ew..orderindexJ[m];

while (Head..ptr->node-id != NULL)

index++;
if(args~.y~tme Head pt->end time)

Largst...cyl~time = Headclpt->end-time;

cyl'lme-output..fll <<endl <<endl <<Largest..cy~jine <<endl;-

Head-.ptr = &new...order[index][m];

#I Find idle timne for "lt" cylinder
jidle...ctrl cycles = (LArgest~cyljime*number-.of-pomwcesr) - blocke&.ctrcycles;

49

idl.e-e...cycles = (LArgesLcyljimenumbeiz-of-prcessors) -
blocked-exe-cycles;

rnake-cylinder~file(ArgesLcyI~fme);
genrae~jiscsLares...cytine~dk.cr~cclsblockedstrlsyclms

idle-eme-cycles. blocke&..exe.cycles, total-idle-proc..exe, tota-ljdk.proc..crL

cylrime..outpuLflle-closeo;

I/Function to create the cylinder output file
void
node..alloc::make..cylinderfile(long Largw-..cyLtim)

niode-type *Head.ptr,

ofsfteam cylinder..output-.file;
cylinder-ouputfil oe~n(cylnder.out");

cerr «< "nCamot Open file cydider.ouit~n*;
exit(O);

for (int j = 0; j < number...of-jprocessors; j++I. I/Print out node order

Head...pa = &new...order(Ollj];
int processrNodes = Headj-,-nodes..per..processor,
cylinder...outpuLfile <<cnewin << processoNodes «< endi <<cendi;

for (int i= 0-,i <processorNodes; i++)

Head...pb = &new-order~iJW];
cylinder-.output-fAl << setw(7) << Head..ptr->node-id;
cylinder-.outputLfle << setw(12) << Head-ptr->startjime;
cylinde..outputjile << setw(12) << Head..ptr->endjime;
cylindet..outpu~file << endL-

cylinder-.outputfle << nwwin << newin << LargesLcyLtim << endi;
cylinder-q.utput-.file~closeO;

#I Function to print individual processor statistics
void

50

node..allc::generte..rocessot.stats~int procNum, long cyl-thme, long exe acking, long
ctripacking, long idle proc.exc. long idle..proc...cti, long blockd-proc...exe. long
blockced-.proc..ctr)

ofstream processor-.stats.Aile;
processr..stats-fie.open("proc-.sts~out"9 ios::app);

cerr «< "UnCannot Open Mie proc-p.tats~ouftn";
exit(0);

processor..stats~file << *PROCESSOR U`rILZATION~nWn;
pro mor..stas-.flle <<"NUMBER OF PROCESSORS: *;
proce-sso..sazs..flle << setw(4) <<number~of..proessors <<endl <<endl;

proesortatjle "CYCLES PER WORD :"
procssorjzatfil <setw(4) <<comm << endi <<cendl;

double cirlutil-rate =(double)t-acigcyl-zme* 100.0;-
double ctrLidle-rate =(double)idle..Proc.ArllcyLdmc 100.0;
double ctrLblockdmd-pe = (double)bk~loc .=ctd/cyLtime* 100.0;,

double exe-.utiLrate =(double)exe- kizng/cy~tirw 100.0;
double exejdlejafte (double)idle~proc..exe/cyLtime* 100.0;-
double exe-blocedj~ate = (double)bloddpock-ex/cy~ime* 100.0;-

procewmorstats file <<"PROCESSOR NUMBER:;
procesorstats'-file <<setw(4) «< procNum «<endl;

procesmsorjttsfl « "1nCONTROL UMiT UTILIZATIONWnWn;

procesor-.stats...file.seff(ios-.flxed);
procssorjstazsj-Mefsf(ios::showpoint);
procssor...stats...flle <<"BEST CYLINDER PACKING (CONTROL TIME):;
proces-sorjtafts..fl «setw(12) <<ctrlacin «<endl <<endl;

prceso..sztsil "END TIME OF ACTIVTIE
processr...statfile «< seW(12) <<ccyLime <<cendl «<enil;
procesmorjtAtsJie << "Control Unit Uffiliztin afte
prmocessot.szt <A < «sew(6) <cspeiso()
iprocessorzas...lle« rLutil-rate <<W~"

procssortatsile "Control Unit Idle Rate
proessr..stts..fle setW6) <<setpzccision(1);

procssor...tai..file «ctuidle...me « "W~n;
-rocssor...statsjl < "Control Unit Blockag Rate

procssor...stats.fillc «<setW6) «sepwzm ();
prcsws=rtasJie <<ctriblockcdjgate << "f%n~m~nW;

processor-statsfile < "EXEUTON UNIT UTILZATION~nWn;

proseor-stasjile <<"BEST CYLINDER PACKING (EXECUTION IBME):;
processorjta-ts..fl <<setw(12) << exe~packing <<endl «<endl;
processorjtam...file << "END TEEOF ACTIVITIE .

51

processor-.statsjfile << setw(12) <<cyLtirm << endi c<<endl;
proesor-stats..fle << *Execution Unit Utilization Rate:;
processor-.stats-file «< setw(6) <<setprecision(l);
processor..statsjlle <<exe...uil~rate << w%%n';
processr-stats-file «< "Execution Unit Idle Rate
processr...stats...file << etw(6) <<sepzmcision(l);
processor..statsflle <<exejdleaze << *%Wn;
processor-.satm-ile << "Execution Unit Blokwke Rat
processor...stats..flle «< setw(6) <<setprecision(l);
processorjtatsjile <<exe..blocke&.rate << w%Wh~nn";
processor-stats...fllc «<endi;

#I Function to print cylinder statistics
void
node..aloc::gnezite..Aatistics(lopg Largea-cyLtime, long idle-ctrl-cycles,% long
blockec-ctrl...cycles long idle-.exe-.cycles, long blocked-exe-.cycles long
totaldle-.proc...exe, long totalidieproc-ctrL, long tota-slice..tnnes)

long exe..cyl.packng =0.
long cftLcyLPackin =0-

node...ype *Had-pJ.,

ofstrem sudstics-output-fiie;
statstics...outpufL~e.open('cyl-statsout');
if (!statitcs-.output..Ae)

cerr «< "Wn-annot Open file cyLstatsoudnw;
exit(O);

statistics....utput-file <<'PROCESSOR UTLIZAIlONWN~n*;
statistics...utpuLfile << 'NUMBER OF PROCESSORS:'";
statistics-.output..file << stw(4) <<number-.of-.processors <<endl <<endl;
statistics-.output..flle << 'CYCLES PER WORD :"
staimstics-.output.file <<setw(4) <<comm «<endl «<endl;

for(mt j = 0; j < number-.of~processors; j4-.)

Head-.ptr = &new-a.rder[OJ]jJ;
int procassorNodes = Head -S-nodes..pr..processor

for (int i = 0- i < processorNodes; i++) fiCalculate exe and ctrl unit padiing per

Head-.ptr = &ew...orderfiJbjJ; wcs
exe...cYL.packing += Hea&.ptr>-'ee..tm;
ct&..cyjAckin += Head.ptr->seuvpjime + Head...pt->bieakdownjidme;

XIIaculat values for -jagged' cylinder

52

long avg-slice-time = totaLslice times/number..ofprocessors;
long besLexe..pacidng = ex-cyl-packing/number...of-PrcesSOrS;
long besLctrl.packing = cti-yLpjwac ng~umber-.of...prcessors;
long av~cu~idle = (idle...ctrcycles/nmber...of..proessors) - besLctrl..pwking;
long av&ctr~blocked = blocked..ctrt.cyclcsnumber...of-.processos;
long ayg...exe-idle = (idlxe...e cycledwnmber..ofproccssor) - bmem-xe.packing;
long avg~exe...blocked = blocked-exe-cyclcanumber...ofproce~ssr;
long avgsuW-idke..jag = (tot Lidle.p=oc..crnumber...of..ipocesor) -

besctLpaddng;
if(avg~ctrL-idle-jag < 0)

avnctrLidle..jag = 0,
long avg-exe-idle-jag = (total-id e-roc..exednumber-ofprpwcessrs) -

bestexe-packing;
if(avg...exe_:dcle.j < 0)

avg-exe-idle-jag = 0;

llCakluat "flat" and "jagged- cylinder Mstwtstc
double exejitilrjate = (double)best-.exe..packinglLarge~cyI time* 100.0;
double ctr-utfiljat = (double)besLcg/L__1argest..cyL~timelOOA),
double cWr_idl_rat = (double)avL~cbtdLdkA~rgsLcyLnme*100.0;,
double ctrLblockedjate = (dul-vcrbokdLre~yjm*100
double exejdle...rase = (double ag.ecd scytm* 100.0;,
double exeblockdjatei = (doubea x.boke~ags~ym* 100.0;
double ar-dle-rate..jag = (double)avg~ctrl ide..4ag/vgjlie tme W100.0;
double ctr1_ud1_rate..jag = (double)bes~ctrLpacknglavgýsHicetirne* 100.0;
double aL-bloedmdate-jag = (dul~vr-crlb ctagdc-w100.0;-
double exejxud-afte.jag =(double)besL-exe..packinglavgslice-time*100.0;
double exejdlejate-jag =(double)avg-exejdfle-jag/av&slicetime*100.0;
double exe..blockdwjate.jag = (double)avg~xebloketavg-slicetim* 100.0;

statstics...output-fil < "WnWn~CONMOL UNIT UTILIZAIONWW~;

statistimoutputjAle~setf(ios:.1xed);
sttsic..output-jilesaetfios::showpoint);

cs.output-file <<"BEST CYLINDER PACKING (COMM1'OL TIME):"
stadtistcsoutputfile «<setw(12) «< <e<tl.akn «endl, «<endl;
statistics-outputjile <« "END TIME OF ACIIIS(FLAT CYLINDER):"
sdstics..output..file <<setw(12) «<Lar#cs..cyLfime «<endl <<endl;
stafistics....utut..ffle <<"Control. Unit Utilization Rate :"
statstic&.output-file «<setw(6) «a etpiecision(l),
statstics_output~file <<ctrLutil..te < *%~nw;
statistcs-.outpujLfle << "Control Unit Idle Rate

sttitis..otpt.Al <<setw(6) <<setprcison(1);
stbc...outut..flle «ctarljidlejate «< "%\nw;

statistics-..utputjile << "Control Unit Blockage Rate
staistcsoutput-.file <<setw(6) «<setprecison(1);

statistics..outputjile << ctriblocicedjat << m%Wn~nm;
sudabtics-.outputfile <<"END IBME OF ACflVIJE (JAGGED' CYLINDER):"
statmstics....utput~file << setw(12) «<avgslice..time <<cendl «<endl;
statistics..output-file «<"Control Unit Utilzjaton Rate :"
staidstics...output.file <<setw(6) «<setprecision(l);
statistics-.outputfile <<ctr-utiLiate..jag << "%\n";
statstics-output-file << "Control Unit Idle Rate

53

swaisdcs..output.Aile << wtw(6) << wetprcision(l);
saitis.. pt-file <<ctrI~dlejate-jA << ~"

- utuL~l <<"Control Unit Bkdmp Raw

_t sicotuLfile <<setw(6) <<ewqprcbiion(l);
switis..upu.file <<crL~blocked-rafteja < "%Wn~n~n*;

stazistics.putputfile «<"EXECUTION UNIT UTZLIZATIONMnn";

stadsdcs_,.ouqmput.fl <<"BEST CYLINDER PACKING (EXECUTION TIME):;
stadscs..ouzput..fle «<setw(12) «< best-exeakn <<endi «<endl,
statistics-.outputLle «< "END TAME OF~ ivj ('FAT CYLINDER):
stdss.c..output..ffle «<setw(12) «< seat cyjm endi «<endi;
statistics..utput.flle «< "Execution Unit Utlhudon Rase
smdtstic...ouqpu..fle << setW6) <setprecison(l);
stadstics-..upaut..flle <<exeja~mtijt < *%%an";
statisdoiosutputffie «< *Execution Unit Idl Rawe
stahstic...outputfile «<setw(6) «apr< si 1);
smss...ouqmu..fie «<excjdle...me %w %.u
sidstics-cutput..Ale << *Execution Unit Blockag Rawe
stadiis....outputflle «< stw(6) <<e- -- -- - l);

sdsics..otpu...l «exc...blckdjutew << *%'Wn~u";
sttsic..ouaput.file << 'END TIME OF ACI~TIES= (7AGGED' CYLINDE):;
sttsis.output.ffle «<setW12) «<av~~im k e um«<endil «endt
sttsds.ouVpuffle « "Execution buitUlr uo Rate

staisics..outut.fle sctW6) «setprecis-iou'l);
statistics...outputjle << a=e..uu*l..rtejag << "*Nn;

sttstisoutputfile «< *Execution Unit Idle Raft

statistcs-.utpu~fi~e «<exejdle...mte~jg << *%%";
staistc~utp~fle "xectin UitBlockageRafte

stai~ds...OupU <l «setW6) «<seqpzeision(1);
smtss..outpu...file «<exe .blockcd...aw-te.a « "%Woon;

staisds...ouput «flush

#I Function to imorder fit ORDERJN file aequendailly
#Ib Tis function uses a simple bubble algorithm to rcorder the ORDER.IN file
void

int i, SWAPP~ED;,
ordetrjz-type TEMP-NODE;

iffmuna orderhimput~file;
orderinput-ffice.open("ORDEILIN");

~emm ncdeM~pute
node-input.flle-open("NODES.IN);
nodejnputfle >> number...ofnodes,

54

node-input.flle.cloaeO;

ofsatram order...outputfile;
order-outpu~.fie.open(rEMP-.ORDELIN');

for (it count = 0- count < number-of-p.odec count++)
I

order..inpuLftl >> ORDER[countJ.nodejd;
orderjnputfle »> ORDER~countJlstar~in;

#/Order Nodes in order of inceasing swrt ine

SWAPPED = 1;
whle, (SWAPPED)

SWAPPED= -
for (0 = < nube of nodes; i.44)

if (ORDERni stdmtjze > ORDER[i+l1JwaLtme) //Reorder nodes

TMMP_..NOuDE = ORDER~iJ;
ORDERri] = ORDERIri+lJ;
ORDERri+11 = TEMPJODE;
SWAPPED = 1;

//Put reordered nodes into output file
fb ;i< ume fIe;i+

if (ORDER[i].nodejd 1= NULL)

order-outpuft~.fi « ORDER[ijm&oe.id << aetw(g) << No <<newin

orderjnpuLffiexow;

sysaem(*nv ORDMRIN ORDERJN.ORO");
syswin~ivTEQ..ODElR.N ORDERJN");
sysean(mmv NODESJIN NODES-SNB.IN);
sysem(*mv NODESJN.ORO NODESIN');

#I end of progrmm

55

APPENDIX B: PROGRAM USER'S MANUAL

L NODE SCHEDULING PROGRAM

This section describes a Large Grain Data Flow node-to-processor scheduling program

(referred to as SCHEDULE) which provides a detailed node-to-processor scheduling of a

data flow graph using the model described in [Ref. 4]. The program uses a two

dimensional army to represent the revolving cylinder to generate the order the nodes should

enter the system based on input data files and data provided by the user. The program also

determines if the breakdown time of the last node on a processor can be wrapped-around'

to provide an accurate modeling of the revolving cylinder. 1his mapping is only concerned

with the arithmetic processors and the program nodes. Therefore, input and output nodes

and the input/output processors described in [Ref. 4] are not included in this scheduling

program or associated data files. This program must be nm prior to executing the mapping

program discussed in Section IL This program begins execution with the command

'schedule'.

A. USER INTERFACE

The following inputs and options awe available to the user.

1. SCHEDULER LATENCY TIME

A number which abstractly represents the time it takes the scheduler to chnge the

state of its local memory when amounts on a queue are modified due to node input or

output.

56

2. COMMUNICATION TIME FOR ONE WORD

This is the time to transmit one word of data between a memory module and a

processor.

B. INPUT FILES

1. Input File: NODES.IN

This file contains the initial node infonmation required for mapping. The number

of nodes parameter is a individual element. The remainipg parameters exist for each node

in the graph.

a. Numb.r of Nodes

This is the total number of nodes in the data flow gaph.

b. Node ID

This is the node identifier number.

C. Iustrictiio Size

This is the node intl•in size paramet in words.

d. Setup Time

TIis is the node setup time in cycles.

e. Executok Time

ITis is the node execution time paameter in cycles.

f. Breakdown Tine

TIis is the node breakdown time parameter in cycles.

g. Proceasor Type

This is the processor number that the node will be assigned to.

2. Input File: QUEUES.IN

This file contains the initial queue information required for scheduling. The

number of queues parameter is an individual element The remaining parameters exist for

each queue in the grph.

57

a. Number of Queues

This is the total number of queues in the data flow graph.

b. Queue ID

This is the queue identfier number.

c. Source Node

hsis thenode ID for the node at the tail of the queue.

d. Sink Node

This is the node ID for the node at the head of dte queue.

e. Wri•e Amount

This i the queue wrate mount parameter in words

f. Read Amoumt

This is the queue rad amount parameter in words.

2. Input File: PROCSIN

This file is fully described in Section IL The only data taken from this file is the

number of processors parameter.

C. OUTPUT FILES

Many output files are created for input to the mapping program.

1. Output File: ORDER.IN

This file is the mapping order of the nodes. The mapping occurs in the order the

nodes are liste

a. Node ID

TMis is the node identifier of the next node to enter the system.

b. Time luto System

This is the time when the node will be available to be mapped. Normally,

all nodes will have a time of V0 which means all nodes are available to be mapped

simultaneously from the start time.

58

2. Output File: NODESSNB.OUT

This file is similar in format to the NODESJN file but also contains the calculated

values of setup and breakdown for the nodes in the system based on the user input. This

file is not used by the mapper program; it is for user information only.

3. Output File: cyilnder.out

This file is a representation of the mapping of the cylinder. It is in the same

format as the file 'cylinder.dat' which is described fully as an input to the synchronization

arc generator (SAG) program, however, this file takes into account the possibility of

'wrap-around' of the breakdown of the last node on a processor. The name of this file

must be changed to 'cylinder.dat' before using it for input to the SAG program.

4. Output File: cyl..stats.out

In this file are several percentages to express the efficiency of the mapping. Two

sets of statistics are given. In the first, the largest completion time over all processors is

computed and all processors are assumed to run to this time ("flat cylinder"). The statistics

are then computed over the total processor-time required by the mapping. This is the

largest completion time over all processors multiplied by the number of processors. In the

second set ("jagged cylinder"), each processor completion time is calculated individually

and the statistics computed for each processor, the average is then taken of the individual

processor statistics.

a. Control Unit and Execution Unit Utilizatiox Rate

This refers to the total percentage of processor-time that the specified unit

(control or execution) is performing useful work, either input or output for the control unit

or execution for the execution unit.

b. Coentol Unit and Execution Unit Blockage Rate

This refers to the total percentage of processor-time that the specified unit

(control or execution) is blocked, ie., the unit has completed the specific task, but the node

cannot switch to the other unit as the other unit is currently busy.

59

c. Control Unit and Execution Unxi Idle Rate

This refers to the total percentage of processor-time that the specified unit

(control or execution) has no node assigned.

5. Output File: proc.stats.out

The processor statistics are outlined in this file. The statistic listings arc

essentially the same as for 'cyLstats.out', except that the statistics are computed over one

processor vice an average over all processors. Each processor is also treated as a 'jagged'

slice, that is, no attempt is made to find the greatest completion time of all processor slices;

the statistics arc calculated based on the final completion time for each individual processor.

60

IL LGDF MAPPING PROGRAM

This section describes a Large Grain Data Flow mapping program (referred to as MAP)

which provides a detailed multiprocesor mapping of a data flow graph using the model

described in [Ref. 4]. TMe program is time driven. As events are scheduled to occur, the

event with the lowest time stamp will set the next time flag. When this flagged time occurs,

all nodes are checked for the next event to occur. A set of lists twk which nodes are in the

various states of processing. This mapping is only concerned with the arithmetic

ptoesors and the program nodes. Therfore, input and output nodes and the inputoput

processors described in [Ref. 4] are not included in this mapping program or associated

data files. This program must be run prior to executing the synchronization arc generator

program or the simulator program discussed in Sections M and IV, respectively. This

program begins execution with the command 'map'.

A. USER INTERFACE

The following inputs and options ame available to te user.

1. SCHEDULER LATENCY TIME

COMMUNICATION TIME FOR ONE WORD

These inputs were fully discussed in Section L

2. INTERACTIVE INTERFACE

The user can slect whether or not to use the ineractive interface. The interface

will allow the user to see the current state of the system at any time. Also, the user can

adjust the operation of the system by manipulating nodes which are waiting to begin

61

B. INPUT FILES

1. Input File: NODES.IN

Input File: QUEUES.IN

These files were also previously described in Section L

2. Input File: CHAINS.IN

This file contains the initial chain information required for mapping. The number

of chains parameter is an individual element. The remaining parameters exist for each chain

in the graph. Note that this file is required to exist, or execution will fail. If there are no

chains, then simply have V(as the only entry in the file.

a. Number of Chains

This is the total number of chains in the system.

b. Chain ID

This is the chain identifier number.

c. Chained Nodes

The node IDs for the nodes included in the chain are listed in the order of

chaining. A V is used to identify the end of the node list for the chain.

3. Input File: PROCSIN

The following infonrio describes the hardware c iguation.

a. Number of Artkhetic Processors

This is the total number of arithmetic processors in the system.

b. Processor T•pe

Mw proces type is listed for the number of processors in the system. For

example, if there are three processors, the numbers 1, 2, and 3 will be listed in a single

column.

4. Input File: ORDER.IN

This file is the mapping order of the nodes. The mapping occurs in the order the

nodes are listed, ibis file can be created manually by the user or can be generated using the

62

scheduler program. This file is fully described as an output to the scheduler program in

Section I.

C. OUTPUT FILES

Many output files are created for complete information on the mapping.

1. Output Files: CONEXE.OUT,CON_UNIT.OUTEXE_UNIT.OUT

These three files provide an exact mapping of the nodes on the processors. The

events occurring at a specific time and the nodes involved are depicted. A key to the

markings is listed in each file. File CON-EXE.OUT provides a complete mapping file,

file 'EXEUNIT.OUT' is a mapping of the execution units only and the file

CONUNIT.OUTI is a mapping of the control units only. These output file listings do

not take into account 'wrap-around' of the last node's beakdown time.

In each file are several percentages to express the efficiency of the mapping. An

important note about the statistics is that they are computed over the total processor-time

required by the mapping. This is the time to complete the mapping multiplied by the

numb-r of processors. The percentages are therefore essentially an average of the

individual processor rates.

a. Processor Utilization Rate

This refers to the total percentage of processor-time that a processor is

performing some activity in either the control unit or the execution unit.

b. Processor Idle Rate

This refers to the total percentage of processor-time that a processor is not

performing any activity.

c. Control Unit and Execution Unit Utilization Rate

This refers to the total percentage of processor-time that the specified unit

(control or execution) is performing useful work, either input or output for the control unit

or execution for the execution unit.

63

d. Control Unit and Execution Unit Blockage Rate

This refers to the total percentage of processor-time that the specified unit

(control or execution) is blocked, i.e., the unit has completed the specific task, but the node

cannot switch to the other unit as the other unit is currently busy.

e. Control Unit and Execution Unit Idle Rate

This refers to the total percentage of processor-time that the specified unit

(control or execution) has no node assigned.

2. Output File: SUMMARY.OUT

This file summarizes the number of processors in particular states at any given

time. The event times in the three previous mapping files will match with this file. The

processor utilization percentages are displayed.

3. Output Flies: NODES.OUT, PROCS.OUT, CHAINS.OUT

These three files provide extremely detailed data on specific nodes, processors,

and chains. The lines are well described within the output listings& Most of the items can

be cross-referenced to other files.

4. Output File: cylinder.dat

This file is a representation of the mapping of the cylinder. It is described fully

as an input to the synchronization arc generator (SAG) program. The inclusion of this file

is to provide the data necessary to run SAG based on the mapping generated by this

program without any adjustments.

D. SELECTION OF THE USER INTERFACE OPTION

The selection of the user interface option will allow the user to observe and

interactively change the mapping as it progresses. However, once the mapping has

progressed past an event, it is not possible to go back and make a change. The interactive

interface is very descriptive. The user can view many aspects of the system and make

many changes during any pause. Selecting the CONTrNUE WITH NEXT EVENT' will

64

allow the mapping to continue. To discontinue the use of the interactive interface, select the

'CHANGE INTERRUPT STRATEGY' followed by 'CONTINUE TO CONCLUSION'

followed by 'CONTINUE WITH EVENT' options. This will allow the mapping to

complete.

65

II. LGDF SYNCHRONIZATION ARC GENERATOR

This section describes a Large Grain Data Flow model synchronization arc generator

program (referred to as SAG). This program acts as a preprocessor to the simulator

program (SIM). Its purpose is to modify the input files to SIM to be able to analyze the

revolving cylinder (RC) method as described in [Ref. 4]. SAG makes extensive use of

linked lists. SAG is started with the command 'generate'.

A. USER INTERFACE

The user has a choice of one of two arc generation techniques in SAG. Both

techniques are described fully in [Ref. 4].

1. Start After Finish (SAF)

This selection will determine the synchronization arcs based on the start after

finish technique.

2. Start After Start (SAS)

This selection will determine the synchronization arcs based on the start after start

technique.

B. INPUT FILES

1. Input File: nodes.dat

This file is a tabular listing which completely describes the nodes of a data flow

graph. The number of nodes parameter is an individual element. The remaining

parameters exist for each node in the graph.

a. Number of Nodes

This is the total number of nodes in the data flow graph. This initializes the

counters necessary to read in the node data.

66

b. Node ID

This is the node identifier number, which must be unique for each node in

the system. Do not use V' as a node ID.

c. Node Type

This identifies the type of node. This type defines how the node will be

handled in the programs.

(1) node type = 0: normalnode

(2) nodetype= 1: inputnode

(3) node type = 2: output node

d. Instruction Size

This is the node instruction size parameter in words.

e. Execution Time

This is the node executio time parameter in cycles.

f. Setup Time

Ibis is the node setup time parameter in cycles.

g. Breakdown Tine

This is the node breakdown time parameter in cycles.

h. Required Processor Type

This is the type of processor required by the node. A listing of '100'

identifies an input/output processor.

i. Alternate Processor Type

This is the alternate processor type to be used if the required processor type

is unavailable. In most cases, the alternate is the same as the required processor type.

j. Memory Module Assignment

This is the memory module assignment for the node if the user defined

memory assignment option is chosen.

67

k. Node Priority

This is the assignment priority associated with the node if the user defined

priority option is chosen. A lower number represents a higher priority.

2. Input File: queues.dat

This file is a tabular listing which completely describes the queues of a data flow

graph. The number of queues parameter is an individual element The remaining

parameters exist for each queue in the graph.

a. Number of Queues

This is the total number of queues in the system. This initializes the

counters necessary to read in the queue data.

b. Queue ID

This is the queue identifier number, which must be unique for each queue in

the system. Do not use V' as a queue ID.

c. Queue Type

This identifies the type of queue. The type defines how the queue will be

handled in the programs.

(1) queue type = 0: dataqueue

(2) queue type = 1: input queue

(3) queue type = 2: output queue

(4) queue type = 3: synchronivation arc

d. Source Node

This is the node M for the nodeatthetal ofthequeue.

e. Sink Node

This is the node ID for the node at the head of the queue.

f. Write Amount

This is the queue write amount parameter in words.

68

g. Read Amount

This is the queue read amount paucer in words.

h. Produce Amount

Tlis is the queue produce amount paramet in words.

i. Consume Amount

TIs is the queue consume amount parameter in words.

j. Thre•eold Amount

This is the queue threshold amount parameter in words.

k. Initial Length

This is the queue initial. lengt parameter in words.

I. Capacity

This is the queue capaciy paramnocr in words.

m. Memory Module Assignment

This is the memory module assignment for the queue if the user defined

memory assignment option is chosen.

3. Input File: machlne.cfg

This file defines the system hardware configuration.

a. Number of Memory Medsius

This is the number of memory modules to be modeled in the simulator.

b. Number of Input / Output Procesors

This is the number of input / output (11O) processors to be modeled in the

simulator. Normally the is only one YO proesor.

c. Number of Arithmetic Processors

This is the number of arithmetc processors in the sysem.

d. Processor Types

1"his is a list of die types of processors defined, with the number of elements

in the list equal to the number of processors, excluding I/O processors which are

69

automatically xfined as '100'. If synchronization arcs without nodes bound to processors

are desired, the user should enter a VO for each element. If however, the user desires

synchronization arcs generated with nodes bound to processors, each element should

correspond to a processor type. For example, if there are three processors, the numbers 1,

2, and 3 should be listed in a column.

4. Input File: cylinder.dat

This file is a representation of the mapping of nodes on the processors. If an

analysis of a cylinder with no wrap-around is desired, this file will be generated by the

external mapping program (MAP). If an analysis of a cylinder with wrap-around is

desired, this file is generated by the scheduler program, after the filename is modified from
'cylinder.out'.

a. Number of Nodes on a Processor

For each arithmetic processor in the system, the number of nodes which

used that processor are given. Following the node total, the following data is provided for

each node on the given processor.

(1) Node ID

(2) The node start time on the processor

(3) The node finish time on the processor

b. Cylinder Size

Following the listing of the nodes, the time to complete the cylinder slice is

given. This is equal to the longest processor busy time of all the processors in the system.

C. OUTPUT FILES

Many output files are created for complete information on the mapping.

1. Output File: queues.dat

This file has the same format as described previously for 'queues.dat'.

However, synchronization arcs have been appended to the end of the file as determined by

70

this program. This adjusted 'queuesdat' file may now be used by the simulator to analyze

the revolving cylinder (PC) 3scedling ftchnues.

2. Output File: oqueue.dat

This file is a copy of the original 'queuesdat'. Since this program modifies the

file 'queues.dat', this file will allow for easy recovery back to the original graph

description, prior to the addition of syncza AMs

3. Output File: IndexcyLout

This file provides the same information as the 'cynnder.dat file. In addition, the

appropriate index for the node is provided as described in [Ref. 41.

4. Output File: tokens.out

This file lists important infoamati about the synchromization arcs, including the

source node, sink node, initial length (number of tokens), threshold amount, consume

amount, and produce amount.

5. Temporary File: rqueow.tp

This file is a temporary file cated during exection which will provide no useul

infomaon to the user.

71

IV. LGDF SIMULATOR

This section describes a simulator (referred to as SIM) for a Large Grain Data Flow

model described in [Ref. 4]. SIM is an event-driven program that makes extensive use of

linked lists SDM is started with the command 'simulate'.

A. USER INTERFACE

There are many inputs and options available to the user. They are presented below

exactly as they appear in the program.

1. COMMENT LINE

This is a comment which will be displayed at the head of the data set in the

statistics file to enable the user to easily distinguish the file ouTpu Results from successive

executions of SIM can be dumped to a single file without losing rauck of the data sets.

2. THE INSTANCE NUMBER TO START GATHERING RESULTS

This is the input instance of the graph to start gathering throughput and utilization

results from the simulation.

3. THE INSTANCE NUMBER TO TERMINATE THE SIMULATION

This is the output instance, which when completed, will terminate the simulation.

4. SCHEDULER LATENCY TIME (cycles)

This is scheduler latency for any queue variations in the scheduler internal

memory. This could be the time taken by the scheduler to manipulate its internal data

structures.

5. COMMUNICATION TIME FOR ONE WORD (cydes)

This is the time to transmit one word of data between a memory unit and a

processor across the data transfer network.

72

6. DATA RATE OPTION

Two options are available:

a. User Defined

The user will be prompted for further input of the time interval which will

pass after the input data for one graph iteration ar entered into the system until the input

data for the next graph iteration are entered into the system. The prompt seen by the user

is: ENTER THE DATA PERIOD BEFORE THE NEXT GRAPH rTERATION (cycles).

b. Maximum Throughput

The simulator will generate data for consecutive graph iterations to insure

that the input queue is constantly filled. This will drive the machine at its maximum

throughput. This effectively permits the user to determine the upper bound in the input dam

rate for the given con.

7. MEMORY MAPPING OPTIONS

Two options are available:

a. User Defined Mapping

This option will map nodes and queues to memory modules as defined in

the nodes.dat file.

b. Arbitrary Mapping

The simulator will arbitrarily assign nodes and queues to memory modules.

8. NODES ON READY LIST OPTION

Two options are available:

a. Only One Node Instance can be on Ready List

Only one instance of a node can be maintained on the ready list at any given

time.

b. Multiple Node Instances can be on Ready List

Multiple instances of a node can be maintained on the ready list at any given

time. However, only one instance of the node can be processing.

73

9. NODES EXECUTION PRIORITY OPTIONS

Several options are available to place nodes in the ready list.:

a. No Priority

Nodes are executed on a First-Come-First-Served (FCFS) basis, i.e.,

according to the order in which they are ready.

b. User Defined

The node priorities are as defined in the file !nodes.dat' This allows the

user to designate critical nodes to be assigned to a processor immediately when data is

available.

c. Shortest Execution 7Tme First

A ready node with a shorter execution time will be assigned before a ready

node with a longer execution time.

d. Longest Execution Time First

A ready node with a longer execution time will be assigned before a ready

node with a shorter execution time.

B. INPUT FILES

Three input files are required by the simulator.

1. Input File: nodes.dat

The contents of this input file are described fully as an input to the

synchronization arc generator program in Section 4.

2. Input File: queues.dat

The contents of this input file are described fully as an input to the

synhronization arc generator program in Section 4.

3. Input File: macbine.cfg

The contents of this input file are described fully as an input to the

synchronization arc generator program in Section 4.

74

C. OUTPUT FILES

Three output files are generated by this program.

1. Output Flies: starts.out

This is a listing of the graph instance and the start times of those instances being

measured.

2. Output File: endtmes.out

This is a listing of the graph instance and end times of those instances being

measured.

3. Output Files: statLout

This file summarizes the data from a given simulation. The same information is

displayed to the standard output upon program completion. Note that this file is an

appended file, so additional simulation results are added to the end of the file which enables

easier comparison of multiple tests. The following data is provided:

a. COMMENT

The comment line input by the user.

b. DATA RATE OPTION

The number conesponding to the choice made at the start of th Irogram.

c. MEMORY MAPPING OPTION

The number correspoding to he choice made at the start of the program.

d. NODES ON READY LIST OPTION

The number cdig to the choice made at the start of the program.

e. NODES EXECUTION PRIORITY OPTION

The number cormsponding to the choice made at the start of the program.

f. START INSTANCE

The data flow graph instance where easurmennts werestarted.

g. END INSTANCE

The data flow graph instance which terminated the simulation.

75

h. SCHEDULER LATENCY TIME (cycles)

The scheduler latency for any queue adjustment in the scheduler internal

memory.

i. COMMUNICATION TIME FOR ONE WORD (cycles)

The communication time to transer one word of data between a memory

module and a processor.

j. ITERATION DATA PERIOD (cycles)

The time differential for the input of consecutive data flow graph iterations,

or the statement MAX THROUGHPUT if the maximum throughput input option was

chosen.

k. PROCESSOR DATA

For each processor in the system, the following data is provided:

(1) ID - the processor identifier

(2) TYPE - the processor type (100 refers to I/O processors)

(3) UTILIZATION - the overall processor utilization rate

(4) EXECUTION - the utilization rate of the execution unit

(5) EXE/UTIL - the amount of execution as part of the overall

utilization

(6) UTIL-EXE - the amount of communication not overlapped with

execution

1. AVERAGE PROCESSOR UTILIZATION

The average amount over all arithmetic processors (excluding I/O) of

processor utilization during the period measurements are taken.

a. AVERAGE PROCESSOR EXECUTION

The average amount over all arithmetic processors (excluding Y1O) of

execution unit utilization during the period measuets are taken.

76

n. AVERAGE EXECUTION / UTILIZATION RATE

The average amount over all arithmetic processors (excluding 110) of

execution unit utilization as a portion of total utilization during the period measurements are

taken.

o. AVERAGE NON-OVERLAPPED COMMUNICATION RATE

The average amount over all arithmetic processors (excluding 1/0) of

communication not overlapped with execution during the period measurements are taken.

p. NORMALIZED DATA RATE

The rate of input into the system compared to the optimum execution

completion time. A value of '0 means the optimum throughput option was chosen.

q. SIMULATION TIME (cycles)

The total time in cycles for the simulation to run to completion.

r. AVERAGE RESPONSE TIME (cycles)

The average length of time over all measured graph instances for a graph

instance to complete.

s. AVERAGE ThROUGHPUT (Instances per Megacycle)

The average number of data flow graphs to be completed per million cycles

during the time measurements are taken..

9. INSTANCE LENGTH STANDARD DEVIATION

The standard deviation of the completion time of the measured instances.

u. COEFFICIENT OF VARIATION

The instance length standard deviation divided by the average response time.

v. 1/0 COMMUNICATION TIME FOR ONE GRAPH INSTANCE

The required communication time (in cycles) for one data flow graph

instance which occurs on the 1/0 processors..

77

w. i/0 CALCULATION TIWfE FOR ONE GRAPH INSTANCE

The required calculation time (in cycles) for one data flow graph instance

which occurs on the I/O processors..

x. NODE COMMUNICATION TIME FOR ONE GRAPH

INSTANCE

The amount of communication time (in cycles) which is related to the graph

nodes (setup latency, breakdown latency, and the time to load the insruction), excluding

that which occurs on the I/O processors.

y. QUEUE COMMUNICATION TIME FOR ONE GRAPH

INSTANCE

The amount of communication time (in cycles) which is related to the graph

queues (reading and writing data), excluding that which occurs on the I/O processors.

z. COMMUNICATION TIME FOR ONE GRAPH INSTANCE

The required communication time (in cycles) of one data flow graph

instance. This does not include the communication time and control time for input and

output nodes and queues.

aa. CALCULATION TIME FOR ONE GRAPH INSTANCE

The required calculation time (in cycles) of one data flow graph instance.

This does not include the calculation time for input and output nodes.

ab. IDEAL CYLINDER COMMUNICATION OF ONE INSTANCE

The amount of communication time (in cycles) which would be equally

divided among the arithmetic processors. This does not include the communication which

occurs on the I/O processors.

ac. IDEAL CYLINDER CALCULATION OF ONE INSTANCE

The amount of calculation time (in cycles) which would be equally divided

among the arithmetic processors. This does not include the calculation which occurs on the

I/O processors.

78

ad. COMMUNICATIONICALCULATION RATIO

The ratio of the communication time to the computation time for one

instance. This does not include the communication and calculation which occurs on the I/O

processors.

79

APPENDIX C: SAMPLE INPUT DATA FILES

NODES.IN

20

101 0 0 50000 0 6
102 0 0 50000 0 3
103 0 0 150000 0 7
104 0 0 150000 0 8
105 0 0 100000 0 4
106 0 0 100000 0 5
107 0 0 1000000 0 1
108 0 0 50000 0 1
109 0 0 400000 0 7
110 0 0 1000000 0 2
111 0 0 400000 0 8
112 0 0 75000 0 2
113 0 0 1000000 0 3
114 0 0 1000000 0 4
115 0 0 1000000 0 5
116 0 0 50000 0 8
117 0 0 800000 0 6
118 0 0 50000 0 6
119 0 0 100000 0 7
120 0 0 100000 0 8

80

QUEUES.IN

25

1 0 101 16384 16384
2 0 102 16384 16384
3 101 103 16384 16384
4 102 104 16384 16384
5 103 105 16384 16384
6 104 106 16384 16384
7 105 107 4096 4096
8 106 108 4096 4096
9 107 109 4096 4096
10 108 110 4096 4096
11 109 112 4096 4096
12 109 113 4096 4096
13 110 111 4096 4096
14 111 112 4096 4096
15 111 114 4096 4096
16 112 115 4096 4096
17 113 116 4 4
18 114 116 4 4
19 115 117 2052 2052
20 116 117 4 4
21 117 118 513 513
22 117 120 513 513
23 118 119 513 513
24 119 0 513 513
25 120 0 513 513

81

nodes.dat

22

10100 50000 006060
102 00 50000 0 03 03 0
103 00 150000 0 0 7 07 0
104 00 150000 0 0 8 080
105 0 0 100000 0 0 4 04 0
106 0 0 100000 0 0 5 0 50
107 0 0 1000000 0 0 1 0 1 0
108 00 50000 0 01 01 0
109 0 0 400000 0 0 7 07 0
110 0 0 1000000 0 0 2 0 20
111 0 0 400000 0 0 8 0 80
112 00 75000 0 02 02 0
113 0 0 1000000 0 0 3 03 0
114 0 0 1000000 0 0 4 04 0
115 0 0 1000000 0 0 5 05 0
116 00 50000 0 08 08 0
117 00 8ooo00 0 0 6 060
118 00 50000 0 06 06 0
119 0 0 100000 0 0 7 07 0
120 0 0 100000 0 0 8 0 80
1 1 0 0 0 0 1001006 0
2 2 0 0 0 010010060

82

queues.dat

25

1 1 1 101 16384 16384 16384 16384 16384 0 131072 11
2 1 1 102 16384 16384 16384 16384 16384 0 131072 4
3 0 101 103 16484 16384 16384 16384 16384 0 131072 7
4 0 102 104 16384 16384 16384 16384 16384 0 131072 5
5 0 103 105 16384 16384 16384 16384 16384 0 131072 8
6 0 104 106 16384 16384 16384 16384 16384 0 131072 6
7 0 105 107 4096 4096 4096 4096 4096 0 32768 1
8 0 106108 4096 4096 4096 4096 4096 0 32768 3
9 0 107 109 4096 4096 4096 4096 4096 0 32768 10
10 0108110 4096 4096 4096 4096 4096 0 32768 2
11 0109112 4096 4096 4096 4096 4096 0 32768 2
12 0 109 113 4096 4096 4096 4096 4096 0 32768 3
13 0 110 111 4096 4096 4096 4096 4096 0 32768 9
14 0 111 112 4096 4096 4096 4096 4096 0 32768 1
15 0 111 114 4096 4096 4096 4096 4096 0 32768 4
16 0 112 115 4096 4096 4096 4096 4096 0 32768 8
17 0113116 4 4 4 4 4032002
18 0 114 116 4 4 4 4 4032008
19 0 115 117 2052 2052 2052 2052 2052 0 16416 6
200116117 4 4 4 4 40 3200 7
21 0 117 118 513 513 513 513 513 0 4104 7
22 0 117 120 513 513 513 513 513 0 4104 9
23 0 118 119 513 513 513 513 513 0 4104 7
242119 2 513 513 513 513 5130 4104 2
252120 2 513 513 513 513 5130 4104 3

83

APPENDIX D: SAMPLE RUN OF PROGRAMS

This appendix outlines the general procedure for running a simulation session with the

programs in this thesis and [Ref. 4]. Input and output files will be indicated in bold.

Commands required to run programs will be indicated in italics. Consult the user's

manual (Appendix B) for detailed descriptions of the program input and output files. Note

that all output files are opened for writing (except stats.out) during program execution.

This means that file names must be modified when running successive iterations of the

same program or data will be lost.

1. Modify the NODES.IN, QUEUES.IN, PROCS.IN, and CHAINS.IN files

for the graph to be analyzed.

2. Run the node allocation program by typing schedule and entering the proper input

data. This program will generate the ORDER.IN file and the cylinder.out file.

3. Run the mapper program by typing map and entering the proper input data. This

will generate the cylinderdat file and other descriptive output files.

There are now several different steps to be taken, depending on whether it is desired to

analyze the FCFS or RC technique and dependent on whether wrap-around or no wrap

around is desired. Each of the techniques and variations will be discussed separately.

A. FCFS

Modify the nodes.dat, queues.dat, and machine.cfg files for the graph to be

analyzed. The cyinder.dat file must also be present for the program to run, although it

is not necessary to be concerned about the wrap-around or no wrap-around option since the

simulator does not use this file for FCFS. Run the simulator program by typing sLmulate

and enter the proper input data.

84

B. RC TECHNIQUES

For the various RC techniques, synchronization arcs must be generated before the

simulator program is run.

1. Start-after-start (SAS) or start-after-finish (SAF) without binding

nodes to processors.

The mndun.cfg file must contain a zero for each processor assigned.

a. No wrap-aroend

Use the cylinder.dat file from the mapper program.

b. Wrap-around:

The cylinder.out fMle must be renamed to cylinder.dat. Ensure the

cylinder.dat file is renamed fu= or it will be overwritten.

Run the synchronization arc program by typing generate. Select the technique

desired. If it is desired to generate another set of synchronization arcs for a different

technique (i.e., SAF arcs are generated, and SAS is now desired) the queues.dat file

must be renamed (to something appropriate, e.g., queues.SAF) and the oqueues.dat

file renamed to queuss.daL The generate program can now be run for the new technique.

2. Start-after-start (SAS) or start-after-finish (SAF) with binding

nodes to processors.

For this technique, the machl.fg file must now contain a number for each

processor assigned (i.e., 1, 2, etc.). The same rules apply as above for generation of arcs

for wrap-around and no wrap-around techniques.

C. SIMULATIONS

For the simulations it is important to maintain the proper input files. Ensure the

queues.dat file matches the appropriate cylinder.dat file, ie., wrap or no wrap and that

the muachne.dg file corresponds to the desired binding or no binding condition. As an

example, say the input files were originally named (after generaing the synchronization

arcs) queues.SAFnW (no wrap), queues.SAFbnW (bound, no wrap),

85

queues.SAFnW (with wrap), queues.SAFbW (bound, with wrap), cylinder.W

(with wrap), cylinder.nW (no wrap), machine.cfgb (bound), and nmachine.cfgnb

(not bound). In order to run a simulation for the no wrap, non-bound configuration, the

files, queues.SAFnW, cylinder.nW, and machine.cfgnb must be renamed to

queues.dat, cylinder.dat, and macdlne.cfg. The simulator program can now be run

by typing simtdae. Remember that the three files named above must be renamed again in

order to simulate new RC techniques.

86

LIST OF REFERENCES

1. Shukla, S.B., Little, B.S., and Zaky, A., "A Compile-Time Technique for
Controlling Real-Time Execution of Task-Level Data Flow Graphs," presented at
the 1992 International Conference on Parallel Processing, St. Charles, Illinois.

2. Cross, D. M., Usefullness of Compile-Time Restructuring of LGDF Programs in
Throughput-Critical Applications, Master's Thesis, Naval Postgraduate School,
Monterey, California, September 1993.

3. Bell, H.A., A Compile-Time Approach For Chaining and Execution Control in
the ANIUYS-2 Parallel Signal Processing Architecture, Master's Thesis, Naval
Postgraduate School, Monterey, California, June 1992.

4. Cross, D.M., Shukla, S.B., and Zaky, A., Revolving Cylinder Analysis: A
Technique for Restructuring of Large Grain Data Flow Graphs Representing
Throughput-Critical Applications, Naval Postgraduate School Technical Report
NPS-EC-93-015, September 1993.

5. Akin, C., Efficient Scheduling of Real Time Compute-Intensive Periodic
Graphs on Large Grain Data Flow Multiprocessor, Master's Thesis, Naval
Postgraduate School, Monterey, California, March 1993.

87

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center 2
Cameron Station
Alexandria, VA 22314-6145

2. Dudley Knox Library, Code 52 2
Naval Postgraduate School
Monterey, CA 93943-5101

3. Chairman, Code ECI
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, CA 93943-5121

4. Prof. Shridhar B. Shukla, Code EC.Sh 2
Depamnent of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, CA 93943-5121

5. Prof Amr Zaky, Code CS/Za 2
Department of Computer Science
Naval Postgraduate School
Monterey, CA 93943-5118

6. Mr. David Kaplan
Naval Resarch Laboratory
4555 Overlook Avenue, SW
Washington, D.C. 20375-5000

7. Mr. Richard Stevens
Naval Research Laboratory
4555 Overlook Avenue, SW
Washington, D.C. 20375-5000

8. Mr. Paul J. Hays
Mail Stop 473
Langley Research Center
Information Systems Division
Hamton, VA 23681-0001

9. LT John P. Cardany, USN
113 Mervine St.
Montrey, CA 93940-6205

10. Mr. W. John Pohl
1710 Springhill Ct.
Louisville, KY 40223

88

